login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A275312
Number of set partitions of [n] with increasing block sizes.
8
1, 1, 1, 2, 2, 6, 11, 28, 51, 242, 532, 1545, 6188, 16592, 86940, 302909, 967523, 3808673, 23029861, 71772352, 484629531, 1840886853, 9376324526, 37878035106, 204542429832, 1458360522892, 6241489795503, 45783932444672, 211848342780210, 1137580874772724
OFFSET
0,4
LINKS
EXAMPLE
a(4) = 2: 1234, 1|234.
a(5) = 6: 12345, 12|345, 13|245, 14|235, 15|234, 1|2345.
a(6) = 11: 123456, 12|3456, 13|2456, 14|2356, 15|2346, 16|2345, 1|23456, 1|23|456, 1|24|356, 1|25|346, 1|26|345.
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1,
`if`(i>n, 0, b(n, i+1)+b(n-i, i+1)*binomial(n-1, i-1)))
end:
a:= n-> b(n, 1):
seq(a(n), n=0..35);
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i > n, 0, b[n, i+1] + b[n-i, i+1] * Binomial[n-1, i-1]]]; a[n_] := b[n, 1]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Jan 22 2017, translated from Maple *)
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 22 2016
STATUS
approved