OFFSET
0,3
COMMENTS
The coefficients of Bell-type polynomials where the monomials correspond to integer partitions. The monomials are in graded lexicographic order with variables x[0] > x[1] > ... > x[n]. This means that monomials are compared first by their total degree, with ties broken by lexicographic order. (This is the monomial order of Maple after sorting.)
EXAMPLE
The triangle starts (the refinement is indicated by square brackets):
[0] 1;
[1] 1;
[2] 2, 2;
[3] 6, 12, 3;
[4] 24, 72, (24, 24), 4;
[5] 120, 480, (180, 360), (40, 120), 5;
[6] 720, 3600, (1440, 4320), (360, 2160, 720), (60, 240, 180), 6;
[7] 5040, 30240, (12600, 50400), (3360, 30240, 20160), (630, 5040, 3780, 7560), (84, 420, 840), 7;
[8] 40320, 282240, (120960, 604800), (33600, 403200, 403200), (6720, 80640, 60480,
241920, 40320), (1008, 10080, 20160, 20160, 30240), (112, 672, 1680, 1120), 8;
The multivariate polynomials start:
1
x[0]
2*x[0]^2 + 2*x[1]
6*x[0]^3 + 12*x[0]*x[1] + 3*x[2]
24*x[0]^4 + 72*x[0]^2*x[1] + 24*x[0]*x[2] + 24*x[1]^2 + 4*x[3]
120*x[0]^5 + 480*x[0]^3*x[1] + 180*x[0]^2*x[2] + 360*x[0]*x[1]^2 + 40*x[0]*x[3] + 120*x[1]*x[2] + 5*x[4]
MAPLE
A335311Triangle := proc(numrows) local ser, p, C, B, P;
B(0) := 1; ser := series(1/B(s), s, numrows);
C := [seq(expand(simplify(n!*coeff(ser, s, n))), n=0..numrows-1)]:
P := subs(seq((D@@n)(B)(0)=n*x[n], n=1..numrows), C):
for p in P do print(seq(abs(c), c=coeffs(sort(p)))) od end:
A335311Triangle(8);
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Peter Luschny, May 31 2020
STATUS
approved