Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Jun 01 2020 06:48:58
%S 1,1,2,2,6,12,3,24,72,24,24,4,120,480,180,360,40,120,5,720,3600,1440,
%T 4320,360,2160,720,60,240,180,6,5040,30240,12600,50400,3360,30240,
%U 20160,630,5040,3780,7560,84,420,840,7
%N Coefficients of polynomials arising in the series expansion of the multiplicative inverse of an analytic function. Irregular triangle read by rows.
%C The coefficients of Bell-type polynomials where the monomials correspond to integer partitions. The monomials are in graded lexicographic order with variables x[0] > x[1] > ... > x[n]. This means that monomials are compared first by their total degree, with ties broken by lexicographic order. (This is the monomial order of Maple after sorting.)
%e The triangle starts (the refinement is indicated by square brackets):
%e [0] 1;
%e [1] 1;
%e [2] 2, 2;
%e [3] 6, 12, 3;
%e [4] 24, 72, (24, 24), 4;
%e [5] 120, 480, (180, 360), (40, 120), 5;
%e [6] 720, 3600, (1440, 4320), (360, 2160, 720), (60, 240, 180), 6;
%e [7] 5040, 30240, (12600, 50400), (3360, 30240, 20160), (630, 5040, 3780, 7560), (84, 420, 840), 7;
%e [8] 40320, 282240, (120960, 604800), (33600, 403200, 403200), (6720, 80640, 60480,
%e 241920, 40320), (1008, 10080, 20160, 20160, 30240), (112, 672, 1680, 1120), 8;
%e The multivariate polynomials start:
%e 1
%e x[0]
%e 2*x[0]^2 + 2*x[1]
%e 6*x[0]^3 + 12*x[0]*x[1] + 3*x[2]
%e 24*x[0]^4 + 72*x[0]^2*x[1] + 24*x[0]*x[2] + 24*x[1]^2 + 4*x[3]
%e 120*x[0]^5 + 480*x[0]^3*x[1] + 180*x[0]^2*x[2] + 360*x[0]*x[1]^2 + 40*x[0]*x[3] + 120*x[1]*x[2] + 5*x[4]
%p A335311Triangle := proc(numrows) local ser, p, C, B, P;
%p B(0) := 1; ser := series(1/B(s), s, numrows);
%p C := [seq(expand(simplify(n!*coeff(ser,s,n))), n=0..numrows-1)]:
%p P := subs(seq((D@@n)(B)(0)=n*x[n], n=1..numrows), C):
%p for p in P do print(seq(abs(c), c=coeffs(sort(p)))) od end:
%p A335311Triangle(8);
%Y Cf. A199673 (row reversed refinement), A006153 (row sums), A000041 (length of rows), A182779 (different monomial order).
%K nonn,tabf
%O 0,3
%A _Peter Luschny_, May 31 2020