OFFSET
2,2
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 2..400
P. Bala, Notes on A273596
Gábor Czédli, Tamás Dékány, Gergő Gyenizse, and Júlia Kulin, The number of slim rectangular lattices, Algebra Universalis, 2016, Volume 75, Issue 1, pp 33-50.
FORMULA
a(n) = Sum_{1<=r,s; r+s<=n} binomial(n-r-1, s-1) * binomial(n-s-1, r-1) * (n-r-s)!.
a(n) ~ exp(2) * n! / n^2. - Vaclav Kotesovec, Jun 29 2016
a(n) = Sum_{k=0..n} hypergeom([k+1, k-n], [], -1). - Peter Luschny, Oct 05 2017
From Peter Bala, Jan 08 2018: (Start)
a(n) = Sum_{k = 0..n-2} k!*binomial(n+k-1, 2*k+1).
a(n) = (n - 2)*a(n-1) + a(n-2) + 2, with a(2) = 1, a(3) = 3.
a(n+2) = 1/n!*Sum_{k = 0..n} (-1)^(n-k)*binomial(n,k)* A000522(n)^2.
Row sums of array A143409 read as a triangle.
O.g.f. with offset 0: 1/(1 - x) o 1/(1 - x) = 1 + 3*x + 9*x^2 + 32*x^3 + ..., where o denotes the white diamond multiplication of power series. See the Bala link for details. (End)
EXAMPLE
The initial term is the diagram of the four element diamond shape lattice.
MAPLE
A273596 := proc (n) option remember; `if`(n = 2, 1, `if`(n = 3, 3, (n-2)*procname(n-1) + procname(n-2) + 2)) end: seq(A273596(n), n = 2..20); # Peter Bala, Jan 08 2017
MATHEMATICA
x = 15;
SRectD = Table[0, {x}];
For[n = 2, n < x, n++,
For[a = 1, a < n, a++,
For[b = 1, b <= n - a, b++,
SRectD[[n]] +=
Binomial[n - a - 1, b - 1]*
Binomial[n - b - 1, a - 1]*(n - a - b)!;
]
]
Print[n, " ", SRectD[[n]]]
]
(* Alternatively: *)
T[n_, k_] := HypergeometricPFQ[{k+1, k-n}, {}, -1];
Table[Sum[T[n, k], {k, 0, n}], {n, 0, 22}] (* Peter Luschny, Oct 05 2017 *)
PROG
(PARI) a(n)= sum(rps=1, n, sum(r=1, n, s = rps-r; binomial(n-r-1, s-1) * binomial(n-s-1, r-1) * (n-r-s)!)); \\ Michel Marcus, Jun 12 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Tamas Dekany, May 26 2016
STATUS
approved