Notes on A273596

Peter Bala, Jan 082018

NAME: The number of slim rectangular diagrams of length $n \geq 2$.

The sequence begins $1,3,9,32,139,729,4515,32336,263205, \ldots$ with an offset of 2 .

Formula for the sequence terms

$$
\begin{equation*}
a(n)=\sum_{1 \leq r, s, r+s \leq n}(n-r-s)!\binom{n-r-1}{s-1}\binom{n-s-1}{r-1} . \tag{1}
\end{equation*}
$$

Our aim is to find a simpler formula for $a(n)$ and then using this to produce a recurrence for the sequence.

1. A recurrence equation

First set $r+s=t$ in (1) to put the double sum in the form

$$
\begin{align*}
a(n) & =\sum_{t=2}^{n} \sum_{r=1}^{t-1}(n-t)!\binom{n-r-1}{t-r-1}\binom{n-t+r-1}{r-1} \\
& =\sum_{t=2}^{n} s(n, t) \tag{2}
\end{align*}
$$

where $s(n, t)$ denotes the inner sum

$$
\begin{equation*}
s(n, t)=\sum_{r=1}^{t-1}(n-t)!\binom{n-r-1}{t-r-1}\binom{n-t+r-1}{r-1} \tag{3}
\end{equation*}
$$

defined for values $n \geq t$, with the initial value $s(t, t)=t-1$.

We find a recurrence for this sum using Maple. The Maple code

```
with(sumtools):
sumrecursion((n-t)!*binomial(n-r-1,t-r-1)binomial(n-t+r-1,r-1), r, s(n));
```

returns the recurrence equation

$$
\begin{equation*}
s(n, t)=\frac{(2 n-1-t)(2 n-2-t)}{2(2 n+1-2 t)} s(n-1, t) \tag{4}
\end{equation*}
$$

One easily verifies that

$$
\begin{equation*}
s(n, t):=\frac{2(n+1-t)!(2 n-1-t)!}{(2 n+2-2 t)!(t-2)!} \tag{5}
\end{equation*}
$$

satisfies the recurrence (4) together with the initial condition $s(t, t)=t-1$.

Thus (2) now becomes a representation for the sequence terms as a single sum:

$$
a(n)=2 \sum_{t=2}^{n} \frac{(n+1-t)!(2 n-1-t)!}{(2 n+2-2 t)!(t-2)!}, \quad n \geq 2
$$

Changing the dummy variable t to $n-t$ gives

$$
a(n)=2 \sum_{t=0}^{n-2} \frac{(t+1)!(n+t-1)!}{(2 t+2)!(n-t-2)!}, \quad n \geq 2
$$

or equivalently,

$$
\begin{equation*}
a(n)=\sum_{t=0}^{n-2} t!\binom{n+t-1}{2 t+1}, \quad n \geq 2 \tag{6}
\end{equation*}
$$

The first few summands in (6) are shown in Table 1 below. Since the row sums of this table give the number of slim rectangular diagrams of length $n+2$ (equivalently, the number of rectangular permutations in the symmetric group S_{n+2}) one wonders if the table entries have some combinatorial significance, perhaps as some statistic on rectangular permutations.

$$
\left(\begin{array}{ccccccc}
& t=0 & 1 & 2 & 3 & 4 & 5 \\
n=0 & 1 & & & & & \\
1 & 2 & 1 & & & & \\
2 & 3 & 4 & 2 & & & \\
3 & 4 & 10 & 12 & 6 & & \\
4 & 5 & 20 & 42 & 48 & 24 & \\
5 & 6 & 35 & 112 & 216 & 240 & 120
\end{array}\right)
$$

Table 1: $t!\binom{n+t+1}{2 t+1}, 0 \leq t \leq 5,0 \leq n \leq 5$.
Next we use the ZeilbergerRecurrence command in Maple's SumTools package to find a recurrence for $a(n)$ given by the sum in (6) over the range of summation from $t=0$ to $t=n-2$. The Maple code

```
with(SumTools[Hypergeometric]):
T := factorial(t)*binomial(n+t-1, 2*t+1):
ZeilbergerRecurrence(T, n, t, a, 0 .. n-2);
```

returns the inhomogeneous recurrence equation

$$
\begin{equation*}
a(n+2)=n a(n+1)+a(n)+2 \tag{7}
\end{equation*}
$$

satisfied by the number of rectangular permutations in S_{n}. The simplicity of this recurrence suggests it may have a combinatorial proof. The recurrence provides a method for rapidly calculating the terms of the sequence.

2. The ordinary generating function for the sequence as a white diamond product of power series

In [1] we introduced the white diamond product of a pair of formal power series $A(x), B(x) \in \mathbb{C}[[x]]$, denoted symbolically by $A(x) \diamond B(x)$. The white diamond product is a commutative and associative \mathbb{C}-bilinear multiplication of power series. The white diamond product of monomial polynomials is given by the formula [1, Proposition 1]

$$
\begin{equation*}
x^{m} \diamond x^{n}=\sum_{k=0}^{m} \frac{m!n!}{(n+k)!}\binom{n+k}{m}\binom{m}{k} x^{n+k} \tag{8}
\end{equation*}
$$

It turns out that the o.g.f. of A273596 has a simple expression as a white diamond product of power series, namely

$$
\begin{equation*}
\frac{1}{1-x} \diamond \frac{1}{1-x}=1+3 x+9 x^{2}+32 x^{3}+139 x^{4}+\cdots \tag{9}
\end{equation*}
$$

(but note the offset is zero here instead of the offset of 2 used in the OEIS entry).
Proof of (9). In the expansion

$$
\begin{equation*}
\frac{1}{1-x} \diamond \frac{1}{1-x}=\sum_{i, j \geq 0} x^{i} \diamond x^{j} \tag{10}
\end{equation*}
$$

we make use of (8) to extract the coefficient of x^{n} in the sum. After a short calculation we arrive at the result

$$
\begin{align*}
{\left[x^{n}\right]\left(\frac{1}{1-x} \diamond \frac{1}{1-x}\right) } & =\sum_{k=0}^{n} \sum_{i=0}^{n} \frac{(n-k)!i!}{n!}\binom{n}{i}\binom{i}{k} \\
& =\sum_{k=0}^{n} f(n, k) \tag{11}
\end{align*}
$$

where $f(n, k)$ denotes the inner sum:

$$
\begin{equation*}
f(n, k)=\sum_{i=0}^{n} \frac{(n-k)!i!}{n!}\binom{n}{i}\binom{i}{k} \tag{12}
\end{equation*}
$$

The Maple code
with(sumtools):
sumrecursion((n-k)! !!binomial(n, i)binomial(i, k)/n!, i, f(n));
returns the recurrence equation

$$
\begin{equation*}
f(n, k)=(n+1) f(n-1, k)-(n-1-k) f(n-2, k) \tag{13}
\end{equation*}
$$

Here $n \geq k$ and from (12) the initial conditions of the recurrence are $f(k, k)=1$ and $f(k+1, k)=k+2$.

Now by (2)

$$
\begin{align*}
a(n) & =\sum_{t=2}^{n} \sum_{r=1}^{t-1}(n-t)!\binom{n-r-1}{t-r-1}\binom{n-t+r-1}{r-1} \\
& =\sum_{t=2}^{n} \sum_{r=1}^{n-1}(n-t)!\binom{n-r-1}{t-r-1}\binom{n-t+r-1}{r-1} \\
& =\sum_{r=1}^{n-1} \sum_{t=2}^{n}(n-t)!\binom{n-r-1}{t-r-1}\binom{n-t+r-1}{r-1} \\
& =\sum_{r=1}^{n-1} g(n, r) \tag{14}
\end{align*}
$$

where $g(n, r)$ denotes the inner sum:

$$
\begin{equation*}
g(n, r)=\sum_{t=2}^{n}(n-t)!\binom{n-r-1}{t-r-1}\binom{n-t+r-1}{r-1} \tag{15}
\end{equation*}
$$

The Maple code
with(sumtools):
sumrecursion((n-t)!binomial(n-r-1,t-r-1)binomial(n-t+r-1,r-1),t,g(n));
returns the recurrence equation

$$
\begin{equation*}
g(n, r)=(n-1) g(n-1, r)-(n-2-r) g(n-2, r) \tag{16}
\end{equation*}
$$

Here $n>r$ and the initial conditions of the recurrence calculated from (15) are

$$
\begin{equation*}
g(r+1, r)=1 \text { and } g(r+2, r)=r+1 \tag{17}
\end{equation*}
$$

If we now define $G(n, k)=g(n+2, k+1)$ it follows from (16) that $G(n, k)$ satisfies the recurrence

$$
\begin{equation*}
G(n, k)=(n+1) G(n-1, k)-(n-k-1) G(n-2, k) \tag{18}
\end{equation*}
$$

for $n \geq k$, with the initial conditions by (17) of $G(k, k)=g(k+2, k+1)=1$ and $G(k+1, k)=g(k+3, k+1)=k+2$.

Comparison with the recurrence (13) yields

$$
G(n, k)=f(n, k),
$$

that is,

$$
g(n+2, k+1)=f(n, k)
$$

Hence from (14)

$$
\begin{aligned}
a(n+2) & =\sum_{k=1}^{n+1} g(n+2, k) \\
& =\sum_{k=0}^{n} g(n+2, k+1) \\
& =\sum_{k=0}^{n} f(n, k) \\
& =\left[x^{n}\right]\left(\frac{1}{1-x} \diamond \frac{1}{1-x}\right)
\end{aligned}
$$

by (11) and the proof is completed.
The asymptotic growth of the sequence is given by $a(n) \sim \exp (2) * n!/ n^{2}$. This is too rapid for the generating function of the sequence to be a rational function. Thus this example shows that the white diamond product of a pair of rational power series may not be a rational power series.

Finally, we note the white diamond product

$$
\begin{align*}
\frac{1}{1-t x} \diamond \frac{1}{1-x}= & 1+(1+2 t) x+\left(1+3 t+5 t^{2}\right) x^{2}+\left(1+4 t+11 t^{2}+16 t^{3}\right) x^{3} \\
& +\left(1+5 t+19 t^{2}+49 t^{3}+65 t^{4}\right) x^{4}+\cdots \tag{19}
\end{align*}
$$

is the bivariate generating function for the square array A143409 read by antidiagonals.

REFERENCES

[1] P. Bala, The white diamond product of power series uploaded to A048993

