

A273324


Integers n such that n^2 + 3 is the sum of 4 but no fewer nonzero squares.


3



2, 5, 6, 10, 11, 14, 18, 21, 22, 26, 27, 30, 34, 37, 38, 42, 43, 46, 50, 53, 54, 58, 59, 62, 66, 69, 70, 74, 75, 78, 82, 85, 86, 90, 91, 94, 98, 101, 102, 106, 107, 110, 114, 117, 118, 122, 123, 126, 130, 133, 134, 138, 139, 142, 146, 149, 150, 154, 155, 158, 162, 165, 166, 170
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

If n^2 + k is a term of A004215, then the minimum positive value of k is 3, obviously.
See also the first differences (A278536) of this sequence.


LINKS

Antti Karttunen, Table of n, a(n) for n = 1..10001


FORMULA

a(n) = A000196(1+A278491(n)).  Antti Karttunen, Nov 26 2016


EXAMPLE

2 is in the sequence because 2^2 + 3 = 7 is a term of A004215.


PROG

(PARI) isA004215(n) = {n\4^valuation(n, 4)%8==7}
lista(nn) = for(n=1, nn, if(isA004215(n^2+3), print1(n, ", ")));


CROSSREFS

Cf. A000196, A004215, A117950, A278491, A278536.
Sequence in context: A187904 A179543 A077471 * A238096 A064572 A032399
Adjacent sequences: A273321 A273322 A273323 * A273325 A273326 A273327


KEYWORD

nonn,easy


AUTHOR

Altug Alkan, May 20 2016


STATUS

approved



