login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A273326
Number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 646", based on the 5-celled von Neumann neighborhood.
4
1, 5, 5, 17, 9, 29, 17, 61, 17, 77, 33, 125, 45, 161, 69, 257, 61, 281, 85, 353, 97, 389, 121, 485, 121, 533, 169, 677, 205, 785, 277, 1073, 245, 1121, 293, 1265, 305, 1301, 329, 1397, 329, 1445, 377, 1589, 413, 1697, 485, 1985, 461, 2057, 533, 2273, 569
OFFSET
0,2
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
MATHEMATICA
CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code=646; stages=128;
rule=IntegerDigits[code, 2, 10];
g=2*stages+1; (* Maximum size of grid *)
a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca=a;
ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k=(Length[ca[[1]]]+1)/2;
ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}];
Map[Function[Apply[Plus, Flatten[#1]]], ca] (* Count ON cells at each stage *)
CROSSREFS
Sequence in context: A294612 A246332 A300784 * A273421 A273758 A273835
KEYWORD
nonn,easy
AUTHOR
Robert Price, May 20 2016
STATUS
approved