login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A273321
Wiener index of graph of b.c.c. unit cells in a line = Sum of distances in a b.c.c. row graph.
2
64, 206, 488, 960, 1672, 2674, 4016, 5748, 7920, 10582, 13784, 17576, 22008, 27130, 32992, 39644, 47136, 55518, 64840, 75152, 86504, 98946, 112528, 127300, 143312, 160614, 179256, 199288, 220760, 243722, 268224, 294316, 322048, 351470, 382632, 415584, 450376, 487058, 525680, 566292
OFFSET
1,1
LINKS
Hamzeh Mujahed, Benedek Nagy, Wiener Index on Lines of Unit Cells of the Body-Centered Cubic Grid, Mathematical Morphology and Its Applications to Signal and Image Processing, Volume 9082 of the series Lecture Notes in Computer Science, pp. 597-606.
FORMULA
a(n) = (25/3)*n^3 + 20*n^2 + (71/3)*n + 12.
From Colin Barker, May 20 2016: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>4.
O.g.f.: 2*x*(32 - 25*x + 24*x^2 - 6*x^3) / (1 - x)^4. (End)
E.g.f.: (12 + 52*x + 45*x^2 + (25/3)*x^3)*exp(x) - 12. - Benedict W. J. Irwin, May 27 2016
MATHEMATICA
Table[(25/3) n^3 + 20 n^2 + (71/3) n + 12, {n, 40}] (* or *)
Rest@ CoefficientList[Series[2 x (32 - 25 x + 24 x^2 - 6 x^3)/(1 - x)^4, {x, 0, 40}], x] (* Michael De Vlieger, May 20 2016 *)
PROG
(PARI) Vec(2*x*(32-25*x+24*x^2-6*x^3)/(1-x)^4 + O(x^50)) \\ Colin Barker, May 20 2016
CROSSREFS
Sequence in context: A030028 A320338 A250135 * A091077 A245991 A186637
KEYWORD
nonn,easy
AUTHOR
Benedek Nagy, May 20 2016
STATUS
approved