OFFSET
1,1
COMMENTS
Numbers n such that n+k-1 is the sum of two nonzero squares in exactly 4-k ways for all k = 1, 2, 3 are 22984, 65600, 80800, 85544, ...
LINKS
Robert Israel, Table of n, a(n) for n = 1..1095
EXAMPLE
58472 is a term because;
58472 = 86^2 + 226^2.
58473 = 48^2 + 237^2 = 147^2 + 192^2.
58474 = 57^2 + 235^2 = 125^2 + 207^2 = 143^2 + 195^2.
MAPLE
N:= 10^6: # get all terms <= N-2
R:= Vector(N):
for x from 1 to floor(sqrt(N)) do
for y from 1 to min(x, floor(sqrt(N-x^2))) do
R[x^2+y^2]:= R[x^2+y^2]+1
od od:
count:= 0:
for n from 1 to N-2 do
if [R[n], R[n+1], R[n+2]] = [1, 2, 3] then
count:= count+1; A[count]:= n;
fi
od:
seq(A[i], i=1..count); # Robert Israel, May 19 2016
PROG
(PARI) is(n, k) = {nb = 0; lim = sqrtint(n); for (x=1, lim, if ((n-x^2 >= x^2) && issquare(n-x^2), nb++); ); nb == k; }
isok(n) = is(n, 1) && is(n+1, 2) && is(n+2, 3);
CROSSREFS
KEYWORD
nonn
AUTHOR
Altug Alkan, May 19 2016
STATUS
approved