The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A273318 Numbers n such that n+k-1 is the sum of two nonzero squares in exactly k ways for all k = 1, 2, 3. 3
 58472, 79208, 104616, 150048, 160848, 205648, 224648, 234448, 252808, 259648, 259920, 294048, 297448, 387648, 421648, 433448, 462976, 488448, 506248, 563048, 621448, 683648, 770976, 790848, 799648, 837448, 1008648, 1040848, 1084904, 1186632, 1195648, 1205648, 1212064 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Numbers n such that n+k-1 is the sum of two nonzero squares in exactly 4-k ways for all k = 1, 2, 3 are 22984, 65600, 80800, 85544, ... LINKS Robert Israel, Table of n, a(n) for n = 1..1095 EXAMPLE 58472 is a term because; 58472 = 86^2 + 226^2. 58473 = 48^2 + 237^2 = 147^2 + 192^2. 58474 = 57^2 + 235^2 = 125^2 + 207^2 = 143^2 + 195^2. MAPLE N:= 10^6: # get all terms <= N-2 R:= Vector(N): for x from 1 to floor(sqrt(N)) do   for y from 1 to min(x, floor(sqrt(N-x^2))) do     R[x^2+y^2]:= R[x^2+y^2]+1 od od: count:= 0: for n from 1 to N-2 do   if [R[n], R[n+1], R[n+2]] = [1, 2, 3] then   count:= count+1; A[count]:= n; fi od: seq(A[i], i=1..count); # Robert Israel, May 19 2016 PROG (PARI) is(n, k) = {nb = 0; lim = sqrtint(n); for (x=1, lim, if ((n-x^2 >= x^2) && issquare(n-x^2), nb++); ); nb == k; } isok(n) = is(n, 1) && is(n+1, 2) && is(n+2, 3); CROSSREFS Cf. A000404, A025284, A025285, A025286. Sequence in context: A227496 A295448 A220987 * A230576 A075980 A031684 Adjacent sequences:  A273315 A273316 A273317 * A273319 A273320 A273321 KEYWORD nonn AUTHOR Altug Alkan, May 19 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 12 04:19 EDT 2021. Contains 343810 sequences. (Running on oeis4.)