login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227496
The Wiener index of the nanostar dendrimer defined pictorially as NS_3 in the Ashrafi et al. references.
2
58278, 386154, 2197138, 11480034, 56846210, 271400130, 1262261058, 5756835906, 25860706882, 114780464706, 504480353858, 2199370440258, 9523306249794, 40996576329282, 175599810575938, 748853449588290, 3181230972730946, 13468193224392258
OFFSET
1,1
COMMENTS
a(1) has been checked by the direct computation of the Wiener index (using Maple).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1001 [Offset shifted to 1 by Georg Fischer, Aug 19 2021]
A. R. Ashrafi and P. Nikzad, Connectivity index of the family of dendrimer nanostars, Digest J. Nanomaterials and Biostructures, 4, 2009, 269-273.
A. R. Ashrafi and P. Nikzad, Kekulé index and bounds of energy for nanostar dendrimers, Digest J. Nanomaterials and Biostructures, 4, 2009, 383-388.
FORMULA
a(n) = -446 + 2^n*(5338 - 208*n) + 4^n*(1300 + 10816*n).
G.f.: 2*x*(29139 - 185730*x + 453464*x^2 - 497024*x^3 + 198144*x^4) / ((1-x)*(1-2*x)^2*(1-4*x)^2).
MAPLE
a := n -> -446+2^n*(5338-208*n)+4^n*(1300+10816*n): seq(a(n), n = 1..18);
MATHEMATICA
gf := -(58278 x + 4 x^2 (-92865 + 4 x (56683 + 16 x (-3883 + 1548 x)))) / ((-1 + x) (1 - 6 x + 8 x^2)^2); ser := Series[gf, {x, 0, 18}];
Table[Coefficient[ser, x, n], {n, 1, 18}] (* Vincenzo Librandi, Jul 20 2013 *)
LinearRecurrence[{13, -64, 148, -160, 64}, {58278, 386154, 2197138, 11480034, 56846210}, 20] (* Harvey P. Dale, Oct 21 2024 *)
PROG
(Magma) [-446 + 2^n*(5338 - 208*n) + 4^n*(1300 + 10816*n): n in [1..20]]; // Vincenzo Librandi, Jul 20 2013
CROSSREFS
Cf. A227497.
Sequence in context: A184372 A237402 A210106 * A295448 A220987 A273318
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Jul 19 2013
STATUS
approved