login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The Wiener index of the nanostar dendrimer defined pictorially as NS_3 in the Ashrafi et al. references.
2

%I #34 Oct 21 2024 12:00:31

%S 58278,386154,2197138,11480034,56846210,271400130,1262261058,

%T 5756835906,25860706882,114780464706,504480353858,2199370440258,

%U 9523306249794,40996576329282,175599810575938,748853449588290,3181230972730946,13468193224392258

%N The Wiener index of the nanostar dendrimer defined pictorially as NS_3 in the Ashrafi et al. references.

%C a(1) has been checked by the direct computation of the Wiener index (using Maple).

%H Vincenzo Librandi, <a href="/A227496/b227496.txt">Table of n, a(n) for n = 1..1001</a> [Offset shifted to 1 by _Georg Fischer_, Aug 19 2021]

%H A. R. Ashrafi and P. Nikzad, <a href="https://chalcogen.ro/269_AshrafiNikzad.pdf">Connectivity index of the family of dendrimer nanostars</a>, Digest J. Nanomaterials and Biostructures, 4, 2009, 269-273.

%H A. R. Ashrafi and P. Nikzad, <a href="https://chalcogen.ro/383_Ashrafi.pdf">Kekulé index and bounds of energy for nanostar dendrimers</a>, Digest J. Nanomaterials and Biostructures, 4, 2009, 383-388.

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (13,-64,148,-160,64).

%F a(n) = -446 + 2^n*(5338 - 208*n) + 4^n*(1300 + 10816*n).

%F G.f.: 2*x*(29139 - 185730*x + 453464*x^2 - 497024*x^3 + 198144*x^4) / ((1-x)*(1-2*x)^2*(1-4*x)^2).

%p a := n -> -446+2^n*(5338-208*n)+4^n*(1300+10816*n): seq(a(n), n = 1..18);

%t gf := -(58278 x + 4 x^2 (-92865 + 4 x (56683 + 16 x (-3883 + 1548 x)))) / ((-1 + x) (1 - 6 x + 8 x^2)^2); ser := Series[gf, {x, 0, 18}];

%t Table[Coefficient[ser, x, n], {n, 1, 18}] (* Vincenzo Librandi, Jul 20 2013 *)

%t LinearRecurrence[{13,-64,148,-160,64},{58278,386154,2197138,11480034,56846210},20] (* _Harvey P. Dale_, Oct 21 2024 *)

%o (Magma) [-446 + 2^n*(5338 - 208*n) + 4^n*(1300 + 10816*n): n in [1..20]]; // _Vincenzo Librandi_, Jul 20 2013

%Y Cf. A227497.

%K nonn,easy

%O 1,1

%A _Emeric Deutsch_, Jul 19 2013