login
A272347
Least number divisible by n and by the number of its own divisors.
1
1, 2, 9, 8, 40, 12, 56, 8, 9, 40, 88, 12, 104, 56, 60, 80, 136, 18, 152, 40, 84, 88, 184, 24, 225, 104, 108, 56, 232, 60, 248, 96, 132, 136, 560, 36, 296, 152, 156, 40, 328, 84, 344, 88, 180, 184, 376, 96, 441, 450, 204, 104, 424, 108, 880, 56, 228, 232, 472, 60
OFFSET
1,2
COMMENTS
By the sequence definition, all terms are refactorable numbers (A033950).
a(n) = n if and only if n is in A033950. - Robert Israel, Feb 15 2017
LINKS
EXAMPLE
For n=4, a(4)=8 because it is the smallest number divisible by 4 whose number of divisors (4) is also divisible by 4; 4 has 3 divisors and cannot be a term.
MAPLE
isA033950 := proc(n)
if modp(n, numtheory[tau](n)) = 0 then
true;
else
false;
end if;
end proc:
A272347 := proc(n)
local m;
for m from 1 do
if isA033950(m*n) then
return m*n;
end if;
end do:
end proc:
seq(A272347(n), n=1..50) ; # R. J. Mathar, Apr 29 2016
MATHEMATICA
f[n_] := Block[{m = n}, While[ Mod[m, DivisorSigma[0, m]] > 0, m += n];
m]; Array[f, 60] (* Robert G. Wilson v, Feb 15 2017 *)
PROG
(PARI) for(n=1, 75, k=n; while(!(k%n==0&&k%numdiv(k)==0), k++); print1(k ", "))
CROSSREFS
Cf. A000005 (number of divisors), A033950 (refactorable numbers).
Sequence in context: A357993 A129194 A300780 * A371255 A214300 A092397
KEYWORD
nonn,look
AUTHOR
Waldemar Puszkarz, Apr 26 2016
STATUS
approved