login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A271739
Number of set partitions of [n] with maximal block length multiplicity equal to ten.
2
1, 0, 66, 286, 4004, 33033, 328328, 3150576, 31286970, 316394650, 3928974907, 48404715723, 526502083107, 6475762500130, 88834932638892, 1136875206056150, 14448572171583550, 197345257083676845, 2738327374576989195, 37603158111513714720, 528367079280330690400
OFFSET
10,3
COMMENTS
At least one block length occurs exactly 10 times, and all block lengths occur at most 10 times.
LINKS
MAPLE
with(combinat):
b:= proc(n, i, k) option remember; `if`(n=0, 1,
`if`(i<1, 0, add(multinomial(n, n-i*j, i$j)
*b(n-i*j, i-1, k)/j!, j=0..min(k, n/i))))
end:
a:= n-> b(n$2, 10)-b(n$2, 9):
seq(a(n), n=10..30);
MATHEMATICA
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[multinomial[n, Join[{n - i*j}, Table[i, j]]]*b[n - i*j, i - 1, k]/j!, {j, 0, Min[k, n/i] }]]];
a[n_] := b[n, n, 10] - b[n, n, 9];
Table[a[n], {n, 10, 30}] (* Jean-François Alcover, May 08 2018, after Alois P. Heinz *)
CROSSREFS
Column k=10 of A271423.
Sequence in context: A322768 A158070 A242726 * A251055 A251048 A259292
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Apr 13 2016
STATUS
approved