login
A251048
Number of (n+1) X (1+1) 0..3 arrays with no 2 X 2 subblock having the sum of its diagonal elements greater than the absolute difference of its antidiagonal elements.
1
66, 290, 854, 2243, 5449, 12858, 29759, 68506, 157205, 360885, 828728, 1904810, 4380530, 10079260, 23198280, 53404661, 122956951, 283114508, 651911889, 1501161236, 3456777827, 7960112783, 18330262426, 42210375756, 97200890000
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 7*a(n-1) - 18*a(n-2) + 17*a(n-3) + 10*a(n-4) - 39*a(n-5) + 38*a(n-6) - 17*a(n-7) + 3*a(n-8) for n>9.
Empirical g.f.: x*(66 - 172*x + 12*x^2 + 363*x^3 - 470*x^4 + 245*x^5 - 34*x^6 - 18*x^7 + 6*x^8) / ((1 - x)^6*(1 - x - 3*x^2)). - Colin Barker, Nov 24 2018
EXAMPLE
Some solutions for n=4:
..0..2....2..3....0..3....3..3....2..2....0..3....0..3....0..2....0..3....0..3
..0..2....0..0....0..3....0..0....0..0....0..0....0..0....0..0....1..2....0..3
..1..0....0..0....0..1....0..0....2..2....0..0....0..0....0..0....0..0....1..0
..1..0....2..2....0..1....1..1....0..0....0..0....0..0....1..0....0..0....2..0
..2..1....0..0....0..1....3..0....1..0....1..0....0..0....3..1....2..0....3..1
CROSSREFS
Column 1 of A251055.
Sequence in context: A242726 A271739 A251055 * A259292 A258958 A120102
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 29 2014
STATUS
approved