login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A251055
T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with no 2X2 subblock having the sum of its diagonal elements greater than the absolute difference of its antidiagonal elements
9
66, 290, 290, 854, 1528, 854, 2243, 4334, 4334, 2243, 5449, 11280, 10289, 11280, 5449, 12858, 25847, 24893, 24893, 25847, 12858, 29759, 56676, 53306, 59215, 53306, 56676, 29759, 68506, 118925, 114512, 123396, 123396, 114512, 118925, 68506, 157205
OFFSET
1,1
COMMENTS
Table starts
.....66.....290.....854....2243....5449....12858....29759....68506....157205
....290....1528....4334...11280...25847....56676...118925...247753....515324
....854....4334...10289...24893...53306...114512...237143...498593...1050871
...2243...11280...24893...59215..123396...262200...533327..1107413...2297926
...5449...25847...53306..123396..248803...521785..1045337..2159272...4456235
..12858...56676..114512..262200..521785..1081183..2129846..4324677...8753870
..29759..118925..237143..533327.1045337..2129846..4118693..8207451..16293926
..68506..247753..498593.1107413.2159272..4324677..8207451.15940227..30777666
.157205..515324.1050871.2297926.4456235..8753870.16293926.30777666..57664667
.360885.1087674.2263156.4888898.9472092.18288333.33460774.61424247.111385877
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 7*a(n-1) -18*a(n-2) +17*a(n-3) +10*a(n-4) -39*a(n-5) +38*a(n-6) -17*a(n-7) +3*a(n-8) for n>9
k=2: a(n) = 8*a(n-1) -25*a(n-2) +35*a(n-3) -7*a(n-4) -49*a(n-5) +77*a(n-6) -55*a(n-7) +20*a(n-8) -3*a(n-9) for n>11
k=3: a(n) = 8*a(n-1) -25*a(n-2) +35*a(n-3) -7*a(n-4) -49*a(n-5) +77*a(n-6) -55*a(n-7) +20*a(n-8) -3*a(n-9) for n>12
k=4: a(n) = 8*a(n-1) -25*a(n-2) +35*a(n-3) -7*a(n-4) -49*a(n-5) +77*a(n-6) -55*a(n-7) +20*a(n-8) -3*a(n-9) for n>12
k=5: a(n) = 8*a(n-1) -25*a(n-2) +35*a(n-3) -7*a(n-4) -49*a(n-5) +77*a(n-6) -55*a(n-7) +20*a(n-8) -3*a(n-9) for n>12
k=6: a(n) = 8*a(n-1) -25*a(n-2) +35*a(n-3) -7*a(n-4) -49*a(n-5) +77*a(n-6) -55*a(n-7) +20*a(n-8) -3*a(n-9) for n>12
k=7: a(n) = 8*a(n-1) -25*a(n-2) +35*a(n-3) -7*a(n-4) -49*a(n-5) +77*a(n-6) -55*a(n-7) +20*a(n-8) -3*a(n-9) for n>12
EXAMPLE
Some solutions for n=4 k=4
..1..1..1..1..3....0..0..1..1..3....1..0..1..3..3....0..0..2..0..3
..0..0..0..0..2....0..0..0..0..2....1..0..0..0..0....0..0..2..0..3
..0..0..0..0..1....1..0..0..0..2....1..0..0..0..0....1..0..2..0..3
..0..0..0..0..1....1..0..0..0..2....1..0..0..0..0....1..0..2..0..3
..2..1..1..0..0....1..0..0..0..1....3..2..1..1..0....3..0..2..0..2
CROSSREFS
Sequence in context: A158070 A242726 A271739 * A251048 A259292 A258958
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 29 2014
STATUS
approved