|
|
A251056
|
|
Numbers n such that n^2 is a sum of 8 consecutive primes.
|
|
2
|
|
|
38, 414, 466, 514, 714, 844, 850, 1076, 1136, 1186, 1370, 1512, 1544, 1580, 1600, 1700, 1844, 1900, 1918, 2028, 2114, 2250, 2304, 2320, 2330, 2364, 2396, 2404, 2450, 2674, 2846, 2894, 3076, 3314, 3346, 3506, 3612, 3622, 3676, 3718, 3774, 3866, 3912, 3966, 4012, 4126, 4506, 4700
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Zak Seidov, Table of n, a(n) for n = 1..10000
|
|
EXAMPLE
|
38^2 = 1444 = prime(38) + ... + prime(45) = 163 + 167 + 173 + 179 + 181 + 191 + 193 + 197,
414^2 = 171396 = prime(2401) + ... + prime(2408) = 21391 + 21397 + 21401 + 21407 + 21419 + 21433 + 21467 + 21481.
|
|
MATHEMATICA
|
Sqrt[#]&/@Select[Total/@Partition[Prime[Range[250000]], 8, 1], IntegerQ[ Sqrt[#]]&] (* Harvey P. Dale, Nov 28 2018 *)
|
|
CROSSREFS
|
Cf. A074924, A051395, A252018, A252019, A252066.
Sequence in context: A155193 A159943 A221634 * A267474 A240258 A254471
Adjacent sequences: A251053 A251054 A251055 * A251057 A251058 A251059
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Zak Seidov, Dec 14 2014
|
|
STATUS
|
approved
|
|
|
|