login
A254471
Sixth partial sums of fifth powers (A000584).
6
1, 38, 456, 3210, 16290, 65922, 225576, 677742, 1834755, 4559620, 10547888, 22958364, 47415108, 93547260, 177288240, 324223524, 574358277, 988774554, 1658764600, 2718164150, 4359769830, 6856910190, 10591453080, 16089775650, 24068499975, 35492110056
OFFSET
1,2
FORMULA
G.f.: (x + 26*x^2 + 66*x^3 + 26*x^4 + x^5)/(- 1 + x)^12.
a(n) = n*(1 + n)*(2 + n)*(3 + n)*(4 + n)*(5 + n)*(6 + n)*(-29 + 54*n + 81*n^2 + 24*n^3 + 2*n^4)/665280.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) + n^5.
EXAMPLE
First differences: 1, 31, 211, 781, 2101, 4651, ... (A022521)
-------------------------------------------------------------------------
The fifth powers: 1, 32, 243, 1024, 3125, 7776, ... (A000584)
-------------------------------------------------------------------------
First partial sums: 1, 33, 276, 1300, 4425, 12201, ... (A000539)
Second partial sums: 1, 34, 310, 1610, 6035, 18236, ... (A101092)
Third partial sums: 1, 35, 345, 1955, 7990, 26226, ... (A101099)
Fourth partial sums: 1, 36, 381, 2336, 10326, 36552, ... (A254644)
Fifth partial sums: 1, 37, 418, 2754, 13080, 49632, ... (A254682)
Sixth partial sums: 1, 38, 456, 3210, 16290, 65922, ... (this sequence)
MATHEMATICA
Table[n (1 + n) (2 + n) (3 + n) (4 + n) (5 + n) (6 + n) (- 29 + 54 n + 81 n^2 + 24 n^3 + 2 n^4)/665280, {n, 23}] (* or *) CoefficientList[Series[(1 + 26 x + 66 x^2 + 26 x^3 + x^4)/(- 1 + x)^12, {x, 0, 28}], x]
PROG
(Magma) [n*(1+n)*(2+n)*(3+n)*(4+n)*(5+n)*(6+n)*(-29+54*n+ 81*n^2+24*n^3+2*n^4)/665280: n in [1..30]]; // Vincenzo Librandi, Feb 15 2015
(PARI) vector(50, n, n*(1 + n)*(2 + n)*(3 + n)*(4 + n)*(5 + n)*(6 + n)*(-29 + 54*n + 81*n^2 + 24*n^3 + 2*n^4)/665280) \\ Derek Orr, Feb 19 2015
KEYWORD
nonn,easy
AUTHOR
Luciano Ancora, Feb 15 2015
STATUS
approved