%I #8 Nov 24 2018 08:12:59
%S 66,290,854,2243,5449,12858,29759,68506,157205,360885,828728,1904810,
%T 4380530,10079260,23198280,53404661,122956951,283114508,651911889,
%U 1501161236,3456777827,7960112783,18330262426,42210375756,97200890000
%N Number of (n+1) X (1+1) 0..3 arrays with no 2 X 2 subblock having the sum of its diagonal elements greater than the absolute difference of its antidiagonal elements.
%H R. H. Hardin, <a href="/A251048/b251048.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 7*a(n1)  18*a(n2) + 17*a(n3) + 10*a(n4)  39*a(n5) + 38*a(n6)  17*a(n7) + 3*a(n8) for n>9.
%F Empirical g.f.: x*(66  172*x + 12*x^2 + 363*x^3  470*x^4 + 245*x^5  34*x^6  18*x^7 + 6*x^8) / ((1  x)^6*(1  x  3*x^2)).  _Colin Barker_, Nov 24 2018
%e Some solutions for n=4:
%e ..0..2....2..3....0..3....3..3....2..2....0..3....0..3....0..2....0..3....0..3
%e ..0..2....0..0....0..3....0..0....0..0....0..0....0..0....0..0....1..2....0..3
%e ..1..0....0..0....0..1....0..0....2..2....0..0....0..0....0..0....0..0....1..0
%e ..1..0....2..2....0..1....1..1....0..0....0..0....0..0....1..0....0..0....2..0
%e ..2..1....0..0....0..1....3..0....1..0....1..0....0..0....3..1....2..0....3..1
%Y Column 1 of A251055.
%K nonn
%O 1,1
%A _R. H. Hardin_, Nov 29 2014
