login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A271378
a(n) = 5^n mod 31.
3
1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25
OFFSET
0,2
COMMENTS
Period 3: repeat [1, 5, 25].
FORMULA
G.f.: (1+5*x+25*x^2)/(1-x^3).
a(n) = a(n-3) for n>2.
a(n) = 5^(n mod 3).
a(n) = (31 - 28*cos(2*n*Pi/3) - 20*sqrt(3)*sin(2*n*Pi/3))/3. - Wesley Ivan Hurt, Jun 30 2016
MAPLE
seq(op([1, 5, 25]), n=0..50); # Wesley Ivan Hurt, Jun 30 2016
MATHEMATICA
PowerMod[5, Range[0, 100], 31]
PROG
(Magma) [Modexp(5, n, 31): n in [0..100]];
(Magma) &cat [[1, 5, 25]^^30]; // Bruno Berselli, Apr 07 2016
(PARI) x='x+O('x^99); Vec((1+5*x+25*x^2)/(1-x^3)) \\ Altug Alkan, Apr 06 2016
CROSSREFS
Cf. similar sequences of the type 5^n mod p, where p is a prime: A070365 (p=7), A070367 (p=11), A070368 (p=13), A070371 (p=17), A070373 (p=19), A036121 (p=23), A070379 (p=29), this sequence (p=31), A070384 (p=37), A070387 (p=41), A070389 (p=43), A036127 (p=47), A036133 (p=73), A036137 (p=97), A271379 (p=101), A036139 (p=103), A036149 (p=157), A271380 (p=163) A036151 (p=167), A036156 (p=193).
Sequence in context: A156310 A142725 A270590 * A305837 A175555 A346994
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Apr 06 2016
EXTENSIONS
Edited by Bruno Berselli, Apr 07 2016
STATUS
approved