login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 5^n mod 31.
3

%I #24 Sep 08 2022 08:46:16

%S 1,5,25,1,5,25,1,5,25,1,5,25,1,5,25,1,5,25,1,5,25,1,5,25,1,5,25,1,5,

%T 25,1,5,25,1,5,25,1,5,25,1,5,25,1,5,25,1,5,25,1,5,25,1,5,25,1,5,25,1,

%U 5,25,1,5,25,1,5,25,1,5,25,1,5,25,1,5,25,1,5,25

%N a(n) = 5^n mod 31.

%C Period 3: repeat [1, 5, 25].

%H Vincenzo Librandi, <a href="/A271378/b271378.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,1).

%F G.f.: (1+5*x+25*x^2)/(1-x^3).

%F a(n) = a(n-3) for n>2.

%F a(n) = 5^(n mod 3).

%F a(n) = (31 - 28*cos(2*n*Pi/3) - 20*sqrt(3)*sin(2*n*Pi/3))/3. - _Wesley Ivan Hurt_, Jun 30 2016

%p seq(op([1, 5, 25]), n=0..50); # _Wesley Ivan Hurt_, Jun 30 2016

%t PowerMod[5, Range[0, 100], 31]

%o (Magma) [Modexp(5, n, 31): n in [0..100]];

%o (Magma) &cat [[1,5,25]^^30]; // _Bruno Berselli_, Apr 07 2016

%o (PARI) x='x+O('x^99); Vec((1+5*x+25*x^2)/(1-x^3)) \\ _Altug Alkan_, Apr 06 2016

%Y Cf. similar sequences of the type 5^n mod p, where p is a prime: A070365 (p=7), A070367 (p=11), A070368 (p=13), A070371 (p=17), A070373 (p=19), A036121 (p=23), A070379 (p=29), this sequence (p=31), A070384 (p=37), A070387 (p=41), A070389 (p=43), A036127 (p=47), A036133 (p=73), A036137 (p=97), A271379 (p=101), A036139 (p=103), A036149 (p=157), A271380 (p=163) A036151 (p=167), A036156 (p=193).

%K nonn,easy

%O 0,2

%A _Vincenzo Librandi_, Apr 06 2016

%E Edited by _Bruno Berselli_, Apr 07 2016