This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A070365 a(n) = 5^n mod 7. 5
 1, 5, 4, 6, 2, 3, 1, 5, 4, 6, 2, 3, 1, 5, 4, 6, 2, 3, 1, 5, 4, 6, 2, 3, 1, 5, 4, 6, 2, 3, 1, 5, 4, 6, 2, 3, 1, 5, 4, 6, 2, 3, 1, 5, 4, 6, 2, 3, 1, 5, 4, 6, 2, 3, 1, 5, 4, 6, 2, 3, 1, 5, 4, 6, 2, 3, 1, 5, 4, 6, 2, 3, 1, 5, 4, 6, 2, 3, 1, 5, 4, 6, 2, 3, 1, 5, 4, 6, 2, 3, 1, 5, 4, 6, 2, 3, 1, 5, 4, 6, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS From Klaus Brockhaus, May 23 2010: (Start) Period 6: repeat [1, 5, 4, 6, 2, 3]. Continued fraction expansion of (221+11*sqrt(1086))/490. Decimal expansion of 199/1287. First bisection is A153727. (End) LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (1,0,-1,1). FORMULA a(n) = (1/30)*(17*(n mod 6)+2*((n+1) mod 6)+27*((n+2) mod 6)-3*((n+3) mod 6)+12*((n+4) mod 6)-13*((n+5) mod 6)). - Paolo P. Lava, Feb 24 2010 From R. J. Mathar, Apr 13 2010: (Start) a(n) = a(n-1) - a(n-3) + a(n-4) for n>3. G.f.: (1+4*x-x^2+3*x^3)/ ((1-x)*(1+x)*(x^2-x+1)). (End) From Klaus Brockhaus, May 23 2010: (Start) a(n+1)-a(n) = A178141(n). a(n+2)-a(n) = A117373(n+5). (End) From G. C. Greubel, Mar 05 2016: (Start) a(n) = a(n-6) for n>5. E.g.f.: (1/3)*(7*cosh(x) + 14*sinh(x) + 2*sqrt(3)*exp(x/2)*sin(sqrt(3)*x/2) - 4*exp(x/2)*cos(sqrt(3)*x/2)). (End) a(n) = (21 - 7*cos(n*Pi) - 8*cos(n*Pi/3) + 4*sqrt(3)*sin(n*Pi/3))/6. - Wesley Ivan Hurt, Jun 23 2016 a(n) = A010876(A000351(n)). - Michel Marcus, Jun 27 2016 MAPLE A070365:=n->[1, 5, 4, 6, 2, 3][(n mod 6)+1]: seq(A070365(n), n=0..100); # Wesley Ivan Hurt, Jun 23 2016 MATHEMATICA PowerMod[5, Range[0, 110], 7] (* or *) LinearRecurrence[{1, 0, -1, 1}, {1, 5, 4, 6}, 110] (* Harvey P. Dale, Apr 26 2011 *) Table[Mod[5^n, 7], {n, 0, 100}] (* G. C. Greubel, Mar 05 2016 *) PadRight[{}, 100, {1, 5, 4, 6, 2, 3}] (* or *) CoefficientList[Series[(1 + 5 x + 4 x^2 + 6 x^3 + 2 x^4 + 3 x^5) / (1 - x^6), {x, 0, 100}], x] (* Vincenzo Librandi, Mar 24 2016 *) PROG (PARI) a(n)=lift(Mod(5, 7)^n) \\ Charles R Greathouse IV, Mar 22 2016 (MAGMA) [Modexp(5, n, 7): n in [0..100]]; // Vincenzo Librandi, Mar 24 2016 - after Bruno Berselli CROSSREFS Cf. A178229 (decimal expansion of (221+11*sqrt(1086))/490), A178141 (repeat 4, -1, 2, -4, 1, -2), A117373 (repeat 1, -2, -3, -1, 2, 3), A153727 (trajectory of 3x+1 sequence starting at 1). Cf. A000351, A010876. Sequence in context: A176317 A092426 A255291 * A190613 A161011 A232734 Adjacent sequences:  A070362 A070363 A070364 * A070366 A070367 A070368 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, May 12 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 21 06:14 EDT 2019. Contains 326162 sequences. (Running on oeis4.)