login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A270866
a(n) = 3*p^5+12*p^4+44*p^3+170*p^2+707*p+2455 +(4*p^2+44*p+291)*gcd(p-1,3) +(p^2+19*p+135)*gcd(p-1,4) +(3*p+31)*gcd(p-1,5) +4*gcd(p-1,7) +5*gcd(p-1,8) +gcd(p-1,9), where p = prime(n).
1
5808, 9911, 34317, 113147, 750735, 1600573, 5546909, 9380741, 23316851, 71271069, 98488755, 233043067, 384847485, 485930975, 751588475, 1356370173, 2299880351, 2710679045, 4306310927, 5734323819, 6578172579, 9721485395, 12413061671, 17537591045, 26866372821
OFFSET
1,1
COMMENTS
When p>=7, this is the number of isomorphism classes of groups of order p^7. See p. 2 of the Misseldine link.
LINKS
Andrew Misseldine, Counting Schur Rings over Cyclic Groups, arXiv preprint arXiv:1508.03757 [math.RA], 2015 (Table 1.1, 7th row.)
MAPLE
p:=n->ithprime(n): A270866:=n->3*p(n)^5+12*p(n)^4+44*p(n)^3+170*p(n)^2+707*p(n)+2455 +(4*p(n)^2+44*p(n)+291)*gcd(p(n)-1, 3) +(p(n)^2+19*p(n)+135)*gcd(p(n)-1, 4) +(3*p(n)+31)*gcd(p(n)-1, 5) +4*gcd(p(n)-1, 7) +5*gcd(p(n)-1, 8) +gcd(p(n)-1, 9): seq(A270866(n), n=1..35); # Wesley Ivan Hurt, Apr 02 2016
MATHEMATICA
Table[3 Prime[n]^5 + 12 Prime[n]^4 + 44 Prime[n]^3 + 170 Prime[n]^2 + 707 Prime[n] + 2455 + (4 Prime[n]^2 + 44 Prime[n] + 291) GCD[Prime[n] - 1, 3] + (Prime[n]^2 + 19 Prime[n]+ 135) GCD[Prime[n] - 1, 4] + (3 Prime[n] + 31) GCD[Prime[n] - 1, 5] + 4 GCD[Prime[n] - 1, 7] + 5 GCD[Prime[n] - 1, 8] + GCD[Prime[n] - 1, 9], {n, 30}]
PROG
(Magma) [3*p^5+12*p^4+44*p^3+170*p^2+707*p+2455+(4*p^2+44*p+291)*Gcd(p-1, 3)+(p^2+19*p+135)*Gcd(p-1, 4)+(3*p+31)*Gcd(p-1, 5)+4*Gcd(p-1, 7)+5*Gcd(p-1, 8)+Gcd(p-1, 9): p in PrimesUpTo(200)];
CROSSREFS
Sequence in context: A233045 A031618 A206655 * A251920 A348821 A104284
KEYWORD
nonn
AUTHOR
Vincenzo Librandi, Apr 01 2016
STATUS
approved