Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Sep 08 2022 08:46:16
%S 5808,9911,34317,113147,750735,1600573,5546909,9380741,23316851,
%T 71271069,98488755,233043067,384847485,485930975,751588475,1356370173,
%U 2299880351,2710679045,4306310927,5734323819,6578172579,9721485395,12413061671,17537591045,26866372821
%N a(n) = 3*p^5+12*p^4+44*p^3+170*p^2+707*p+2455 +(4*p^2+44*p+291)*gcd(p-1,3) +(p^2+19*p+135)*gcd(p-1,4) +(3*p+31)*gcd(p-1,5) +4*gcd(p-1,7) +5*gcd(p-1,8) +gcd(p-1,9), where p = prime(n).
%C When p>=7, this is the number of isomorphism classes of groups of order p^7. See p. 2 of the Misseldine link.
%H Vincenzo Librandi, <a href="/A270866/b270866.txt">Table of n, a(n) for n = 1..1000</a>
%H Andrew Misseldine, <a href="http://arxiv.org/abs/1508.03757">Counting Schur Rings over Cyclic Groups</a>, arXiv preprint arXiv:1508.03757 [math.RA], 2015 (Table 1.1, 7th row.)
%p p:=n->ithprime(n): A270866:=n->3*p(n)^5+12*p(n)^4+44*p(n)^3+170*p(n)^2+707*p(n)+2455 +(4*p(n)^2+44*p(n)+291)*gcd(p(n)-1,3) +(p(n)^2+19*p(n)+135)*gcd(p(n)-1,4) +(3*p(n)+31)*gcd(p(n)-1,5) +4*gcd(p(n)-1,7) +5*gcd(p(n)-1,8) +gcd(p(n)-1,9): seq(A270866(n), n=1..35); # _Wesley Ivan Hurt_, Apr 02 2016
%t Table[3 Prime[n]^5 + 12 Prime[n]^4 + 44 Prime[n]^3 + 170 Prime[n]^2 + 707 Prime[n] + 2455 + (4 Prime[n]^2 + 44 Prime[n] + 291) GCD[Prime[n] - 1, 3] + (Prime[n]^2 + 19 Prime[n]+ 135) GCD[Prime[n] - 1, 4] + (3 Prime[n] + 31) GCD[Prime[n] - 1, 5] + 4 GCD[Prime[n] - 1, 7] + 5 GCD[Prime[n] - 1, 8] + GCD[Prime[n] - 1, 9], {n, 30}]
%o (Magma) [3*p^5+12*p^4+44*p^3+170*p^2+707*p+2455+(4*p^2+44*p+291)*Gcd(p-1, 3)+(p^2+19*p+135)*Gcd(p-1, 4)+(3*p+31)*Gcd(p-1, 5)+4*Gcd(p-1, 7)+5*Gcd(p-1, 8)+Gcd(p-1, 9): p in PrimesUpTo(200)];
%Y Cf. A269748, A269749.
%K nonn
%O 1,1
%A _Vincenzo Librandi_, Apr 01 2016