login
A270455
Partial sums of the number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 163", based on the 5-celled von Neumann neighborhood.
1
1, 6, 15, 48, 73, 158, 207, 368, 449, 710, 831, 1216, 1385, 1918, 2143, 2848, 3137, 4038, 4399, 5520, 5961, 7326, 7855, 9488, 10113, 12038, 12767, 15008, 15849, 18430, 19391, 22336, 23425, 26758, 27983, 31728, 33097, 37278, 38799, 43440, 45121, 50246, 52095
OFFSET
0,2
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
Conjectures from Colin Barker, Mar 17 2016: (Start)
a(n) = (3*(3+(-1)^n)+(22-6*(-1)^n)*n-6*(-4+(-1)^n)*n^2+8*n^3)/12.
a(n) = (4*n^3+9*n^2+8*n+6)/6 for n even.
a(n) = (4*n^3+15*n^2+14*n+3)/6 for n odd.
a(n) = a(n-1)+3*a(n-2)-3*a(n-3)-3*a(n-4)+3*a(n-5)+a(n-6)-a(n-7) for n>6.
G.f.: (1+5*x+6*x^2+18*x^3+x^4+x^5) / ((1-x)^4*(1+x)^3).
(End)
MATHEMATICA
CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code=163; stages=128;
rule=IntegerDigits[code, 2, 10];
g=2*stages+1; (* Maximum size of grid *)
a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca=a;
ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k=(Length[ca[[1]]]+1)/2;
ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}];
on=Map[Function[Apply[Plus, Flatten[#1]]], ca] (* Count ON cells at each stage *)
Table[Total[Part[on, Range[1, i]]], {i, 1, Length[on]}] (* Sum at each stage *)
CROSSREFS
Cf. A270454.
Sequence in context: A271537 A271891 A272449 * A318414 A106272 A056423
KEYWORD
nonn,easy
AUTHOR
Robert Price, Mar 17 2016
STATUS
approved