login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A270456
First differences of number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 163", based on the 5-celled von Neumann neighborhood.
1
4, 4, 24, -8, 60, -36, 112, -80, 180, -140, 264, -216, 364, -308, 480, -416, 612, -540, 760, -680, 924, -836, 1104, -1008, 1300, -1196, 1512, -1400, 1740, -1620, 1984, -1856, 2244, -2108, 2520, -2376, 2812, -2660, 3120, -2960, 3444, -3276, 3784, -3608, 4140
OFFSET
0,1
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
Conjectures from Colin Barker, Mar 17 2016: (Start)
a(n) = 2*((1+n)*(2+(-1)^n*n)).
a(n) = 2*n^2+6*n+4 for n even.
a(n) = -2*n^2+2*n+4 for n odd.
a(n) = -a(n-1)+2*a(n-2)+2*a(n-3)-a(n-4)-a(n-5) for n>4.
G.f.: 4*(1+2*x+5*x^2) / ((1-x)^2*(1+x)^3).
(End)
MATHEMATICA
CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code=163; stages=128;
rule=IntegerDigits[code, 2, 10];
g=2*stages+1; (* Maximum size of grid *)
a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca=a;
ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k=(Length[ca[[1]]]+1)/2;
ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}];
on=Map[Function[Apply[Plus, Flatten[#1]]], ca] (* Count ON cells at each stage *)
Table[on[[i+1]]-on[[i]], {i, 1, Length[on]-1}] (* Difference at each stage *)
CROSSREFS
Cf. A270454.
Sequence in context: A271167 A271155 A271132 * A088304 A131978 A049614
KEYWORD
sign,easy
AUTHOR
Robert Price, Mar 17 2016
STATUS
approved