login
Partial sums of the number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 163", based on the 5-celled von Neumann neighborhood.
1

%I #12 Jul 26 2024 21:16:34

%S 1,6,15,48,73,158,207,368,449,710,831,1216,1385,1918,2143,2848,3137,

%T 4038,4399,5520,5961,7326,7855,9488,10113,12038,12767,15008,15849,

%U 18430,19391,22336,23425,26758,27983,31728,33097,37278,38799,43440,45121,50246,52095

%N Partial sums of the number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 163", based on the 5-celled von Neumann neighborhood.

%C Initialized with a single black (ON) cell at stage zero.

%D S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

%H Robert Price, <a href="/A270455/b270455.txt">Table of n, a(n) for n = 0..128</a>

%H N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>

%H S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>

%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>

%H <a href="https://oeis.org/wiki/Index_to_2D_5-Neighbor_Cellular_Automata">Index to 2D 5-Neighbor Cellular Automata</a>

%H <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>

%F Conjectures from _Colin Barker_, Mar 17 2016: (Start)

%F a(n) = (3*(3+(-1)^n)+(22-6*(-1)^n)*n-6*(-4+(-1)^n)*n^2+8*n^3)/12.

%F a(n) = (4*n^3+9*n^2+8*n+6)/6 for n even.

%F a(n) = (4*n^3+15*n^2+14*n+3)/6 for n odd.

%F a(n) = a(n-1)+3*a(n-2)-3*a(n-3)-3*a(n-4)+3*a(n-5)+a(n-6)-a(n-7) for n>6.

%F G.f.: (1+5*x+6*x^2+18*x^3+x^4+x^5) / ((1-x)^4*(1+x)^3).

%F (End)

%t CAStep[rule_,a_]:=Map[rule[[10-#]]&,ListConvolve[{{0,2,0},{2,1,2},{0,2,0}},a,2],{2}];

%t code=163; stages=128;

%t rule=IntegerDigits[code,2,10];

%t g=2*stages+1; (* Maximum size of grid *)

%t a=PadLeft[{{1}},{g,g},0,Floor[{g,g}/2]]; (* Initial ON cell on grid *)

%t ca=a;

%t ca=Table[ca=CAStep[rule,ca],{n,1,stages+1}];

%t PrependTo[ca,a];

%t (* Trim full grid to reflect growth by one cell at each stage *)

%t k=(Length[ca[[1]]]+1)/2;

%t ca=Table[Table[Part[ca[[n]][[j]],Range[k+1-n,k-1+n]],{j,k+1-n,k-1+n}],{n,1,k}];

%t on=Map[Function[Apply[Plus,Flatten[#1]]],ca] (* Count ON cells at each stage *)

%t Table[Total[Part[on,Range[1,i]]],{i,1,Length[on]}] (* Sum at each stage *)

%Y Cf. A270454.

%K nonn,easy

%O 0,2

%A _Robert Price_, Mar 17 2016