login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A270439
Alternating sum of nonsquares (A000037).
1
2, -1, 4, -2, 5, -3, 7, -4, 8, -5, 9, -6, 11, -7, 12, -8, 13, -9, 14, -10, 16, -11, 17, -12, 18, -13, 19, -14, 20, -15, 22, -16, 23, -17, 24, -18, 25, -19, 26, -20, 27, -21, 29, -22, 30, -23, 31, -24, 32, -25, 33, -26, 34, -27, 35, -28, 37, -29, 38, -30, 39, -31, 40, -32, 41, -33, 42, -34, 43, -35, 44, -36, 46, -37, 47
OFFSET
1,1
COMMENTS
Interleaving of nontriangular numbers (A014132) and negative integers (A001478).
FORMULA
a(n) = Sum_{k = 1..n} (-1)^(k+1)*(k + floor(1/2 + sqrt(k))).
a(n) = Sum_{k = 1..n} (-1)^(k+1)*A000037(k).
a(2^k*m) = -2^(k-1) * m, k > 0.
a(2k - 1) = k + floor(1/2 + sqrt(2*k)), a(2k) = -k, k > 0.
a(2k - 1) = A014132(k), a(2k) = A001478(k).
EXAMPLE
a(1) = a(2*1-1) = 1 + floor(1/2 + sqrt(2*1)) = 2;
a(2) = a(2*1) = -1;
a(3) = a(2*2-1) = 2 + floor(1/2 + sqrt(2*2)) = 4;
a(4) = a(2*2) = -2;
a(5) = a(2*3-1) = 3 + floor(1/2 + sqrt(2*3)) = 5;
a(6) = a(2*3) = -3, etc.
or
a(1) = 2;
a(2) = 2 - 3 = -1;
a(3) = 2 - 3 + 5 = 4;
a(4) = 2 - 3 + 5 - 6 = -2;
a(5) = 2 - 3 + 5 - 6 + 7 = 5;
a(6) = 2 - 3 + 5 - 6 + 7 - 8 = -3, etc.
(2, 3, 5, 6, 7, 8, ... is the nonsquares).
MATHEMATICA
Table[Sum[(-1)^(k + 1) (k + Floor[1/2 + Sqrt[k]]), {k, n}], {n, 75}]
PROG
(PARI) a(n)=if(n%2, sqrtint(4*n-3)+n+2, -n)\2 \\ Charles R Greathouse IV, Aug 03 2016
(Python)
from math import isqrt
def A270439(n): return (n>>1)+1+(m:=isqrt(n+1))+int(n-m*(m+1)>=0) if n&1 else -(n>>1) # Chai Wah Wu, Nov 14 2022
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Ilya Gutkovskiy, Jul 12 2016
STATUS
approved