login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A269237
a(n) = (n + 1)^2*(5*n^2 + 10*n + 2)/2.
2
1, 34, 189, 616, 1525, 3186, 5929, 10144, 16281, 24850, 36421, 51624, 71149, 95746, 126225, 163456, 208369, 261954, 325261, 399400, 485541, 584914, 698809, 828576, 975625, 1141426, 1327509, 1535464, 1766941, 2023650, 2307361, 2619904, 2963169, 3339106, 3749725, 4197096
OFFSET
0,2
COMMENTS
Partial sums of centered dodecahedral numbers (A005904).
LINKS
FORMULA
G.f.: (1 + 29*x + 29*x^2 + x^3)/(1 - x)^5.
E.g.f.: exp(x)*(2 + 66*x + 122*x^2 + 50*x^3 + 5*x^4)/2.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
Sum_{n>=0} 1/a(n) = (5 - Pi^2 - sqrt(15)*Pi*cot(sqrt(3/5)*Pi))/9 = 1.0377796966... . - Vaclav Kotesovec, Apr 10 2016
MAPLE
A269237:=n->(n + 1)^2*(5*n^2 + 10*n + 2)/2: seq(A269237(n), n=0..50); # Wesley Ivan Hurt, Oct 15 2017
MATHEMATICA
Table[(n + 1)^2 ((5 n^2 + 10 n + 2)/2), {n, 0, 35}]
LinearRecurrence[{5, -10, 10, -5, 1}, {1, 34, 189, 616, 1525}, 36]
PROG
(PARI) x='x+O('x^99); Vec((1+29*x+29*x^2+x^3)/(1-x)^5) \\ Altug Alkan, Apr 10 2016
(Magma) [(n + 1)^2*(5*n^2 + 10*n + 2)/2 : n in [0..50]]; // Wesley Ivan Hurt, Oct 15 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Ilya Gutkovskiy, Apr 09 2016
STATUS
approved