login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A200256
Number of 0..n arrays x(0..6) of 7 elements with each no smaller than the sum of its previous elements modulo (n+1)
1
34, 192, 1252, 3645, 12063, 28672, 71970, 140625, 287570, 513216, 936348, 1529437, 2544535, 3932160, 6155908, 9034497, 13408074, 19000000, 27138660, 37202781, 51353159, 68677632, 92363430, 120670225, 158439658, 203297472, 261905308
OFFSET
1,1
COMMENTS
Row 7 of A200251
LINKS
FORMULA
Empirical: a(n) = 2*a(n-1) -2*a(n-3) +2*a(n-4) -2*a(n-5) +2*a(n-7) -2*a(n-9) +2*a(n-11) -2*a(n-12) +2*a(n-13) -2*a(n-15) +2*a(n-16) -2*a(n-17) +2*a(n-19) -2*a(n-20) +2*a(n-21) -2*a(n-23) +2*a(n-25) -2*a(n-27) +2*a(n-28) -2*a(n-29) +2*a(n-31) +a(n-32) -4*a(n-33) +4*a(n-35) -4*a(n-36) +4*a(n-37) -4*a(n-39) +4*a(n-41) -4*a(n-43) +4*a(n-44) -4*a(n-45) +4*a(n-47) -4*a(n-48) +4*a(n-49) -4*a(n-51) +4*a(n-52) -4*a(n-53) +4*a(n-55) -4*a(n-57) +4*a(n-59) -4*a(n-60) +4*a(n-61) -4*a(n-63) +a(n-64) +2*a(n-65) -2*a(n-67) +2*a(n-68) -2*a(n-69) +2*a(n-71) -2*a(n-73) +2*a(n-75) -2*a(n-76) +2*a(n-77) -2*a(n-79) +2*a(n-80) -2*a(n-81) +2*a(n-83) -2*a(n-84) +2*a(n-85) -2*a(n-87) +2*a(n-89) -2*a(n-91) +2*a(n-92) -2*a(n-93) +2*a(n-95) -a(n-96)
EXAMPLE
Some solutions for n=6
..0....4....0....3....0....3....0....4....2....1....2....3....3....3....4....4
..4....6....0....5....1....5....2....5....5....6....6....6....4....6....6....6
..4....4....0....2....6....3....2....6....2....1....2....2....2....5....4....4
..1....1....2....3....0....4....4....2....3....6....6....6....5....4....4....2
..5....1....5....6....3....1....1....5....5....0....6....5....2....5....5....5
..5....5....2....5....4....3....5....1....3....0....2....3....4....5....5....1
..5....3....4....6....0....6....5....5....6....3....6....4....6....0....4....5
CROSSREFS
Sequence in context: A365222 A032771 A269237 * A074709 A074900 A302227
KEYWORD
nonn
AUTHOR
R. H. Hardin Nov 15 2011
STATUS
approved