login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A200258
a(n) = Fibonacci(8n+7) mod Fibonacci(8n+1).
1
32, 1508, 70844, 3328160, 156352676, 7345247612, 345070285088, 16210958151524, 761569962836540, 35777577295165856, 1680784562909958692, 78961096879472892668, 3709490768772315996704, 174267105035419378952420, 8186844445895938494767036
OFFSET
1,1
FORMULA
From Bruno Berselli, Nov 17 2011: (Start)
G.f.: 4*x*(8+x)/(1-47*x+x^2).
a(n) = 47*a(n-1)-a(n-2).
a(n) = ((-5+3r)*(47+21r)^n-(5+3r)*(47-21r)^n)/(5*2^(n-1)) where r=sqrt(5). (End)
a(n) = 32*A049668(n) + 4*A049668(n-1). - R. J. Mathar, Nov 26 2011
MATHEMATICA
Table[Mod[Fibonacci[(8 n + 7)] , Fibonacci[(8 n + 1)]], {n, 1, 16}]
CoefficientList[Series[4*(8+x)/(1-47*x+x^2), {x, 0, 20}], x] (* Vincenzo Librandi, Jul 12 2012 *)
PROG
(Magma) I:=[32, 1508]; [n le 2 select I[n] else 47*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Jul 12 2012
CROSSREFS
Sequence in context: A300809 A301448 A220577 * A122123 A357571 A013994
KEYWORD
nonn,easy
AUTHOR
Artur Jasinski, Nov 15 2011
STATUS
approved