login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A268399
Number of North-East lattice paths from (0,0) to (n,n) that have exactly four east steps below the subdiagonal y = x-1.
0
14, 70, 286, 1099, 4124, 15327, 56770, 210188, 779076, 2893111, 10767680, 40171225, 150229560, 563151435, 2115877410, 7967261640, 30063189300, 113663662560, 430549220244, 1633782030774, 6210024076424, 23641792007350, 90140083306676, 344168324083080, 1315850249846440, 5037257160310193
OFFSET
5,1
COMMENTS
This sequence is related to paired pattern P_1 in Pan and Remmel's link.
LINKS
Ran Pan and Jeffrey B. Remmel, Paired patterns in lattice paths, arXiv:1601.07988 [math.CO], 2016.
FORMULA
G.f.: -((-1 + f(x) + 2*x)^2*(-1 + f(x) + x*(2*f(x) + x + 5*f(x)*x - 10*x^2)))/(8*x^2), where f(x) = sqrt(1 - 4*x).
Conjecture: -(n+2)*(641*n-5292)*a(n) +(-641*n^2-1681*n+22692)*a(n-1) +(-4067*n^2+10502*n+80184) *a(n-2) +6*(5629*n-11668)*(2*n-11) *a(n-3)=0. - R. J. Mathar, Jun 07 2016
Conjecture: +(n+2)*(1023*n^2-11311*n+23730) *a(n) +(1023*n^3+15038*n^2-85751*n+44490)*a(n-1) -10*(2*n-9) *(1023*n^2-2563*n+1450)*a(n-2)=0. - R. J. Mathar, Jun 07 2016
CROSSREFS
Cf. A268370.
Sequence in context: A201106 A337641 A213160 * A034554 A246507 A034562
KEYWORD
nonn
AUTHOR
Ran Pan, Feb 03 2016
STATUS
approved