login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A246507
a(n) = 70*(n+1)*binomial(2*n+1,n+1)/(n+5).
1
14, 70, 300, 1225, 4900, 19404, 76440, 300300, 1178100, 4618900, 18106088, 70984095, 278369000, 1092063000, 4286142000, 16830250920, 66118842900, 259878874500, 1021939149000, 4020523757250, 15824781508536, 62313700079400, 245478212434000, 967428110493000, 3814113125277000
OFFSET
0,1
COMMENTS
4*a(n+1) is the number of annular noncrossing permutations of parameter 4, see the references.
LINKS
Benoît Collins, James A. Mingo, Piotr Śniady, and Roland Speicher, Second order freeness and fluctuations of random matrices. III: Higher order freeness and free cumulants, Documenta Mathematica 12 (2007), 1-70.
James A. Mingo and Alexandru Nica, Annular noncrossing permutations and partitions, and second-order asymptotics for random matrices, International Mathematics Research Notices, Vol. 2004, No. 28 (2004), pp. 1413-1460; arXiv preprint, arXiv:math/0303312 [math.OA], 2003.
FORMULA
O.g.f.: 2*(1-sqrt(1-4*z)-2*z-2*z^2-4*z^3-10*z^4)/(sqrt(1-4*z) *4*z^5).
Representation as the n-th moment of a signed function w(x)=2*sqrt(x)*(x^4-2*x^3-2*x^2-4*x-10)/(4*Pi*sqrt(4-x)) on the segment x=(0,4), in Maple notation: a(n) = int(x^n*w(x), x=0..4). The function w(x) -> 0 for x -> 0, and w(x) -> infinity for x->4.
a(n) ~ (35/65536)*4^n*(-755913243+151182552*n - 30236416*n^2 + 6047744*n^3 - 1212416*n^4 + 262144*n^5)/(n^(11/2)*sqrt(Pi)).
Another asymptotic series starts: a(n) ~ exp(n*log(4) + log((70*(2*n+1))/(n+5)) - log(Pi*n)/2 - 1/(8*n)). - Peter Luschny, Aug 28 2014
n*(n+5)*a(n) -2*(n+4)*(2*n+1)*a(n-1) = 0. - R. J. Mathar, Jun 14 2016
From Amiram Eldar, Feb 16 2023: (Start)
Sum_{n>=0} 1/a(n) = 2*Pi/(45*sqrt(3)) + 1/105.
Sum_{n>=0} (-1)^n/a(n) = 44*log(phi)/(175*sqrt(5)) + 1/175, where phi is the golden ratio (A001622). (End)
MATHEMATICA
Table[70 (n+1) Binomial[2 n + 1, n + 1]/(n + 5), {n, 0, 30}] (* Vincenzo Librandi, Aug 29 2014 *)
PROG
(Magma) [70*(n+1)*Binomial(2*n+1, n+1)/(n+5): n in [0..30]]; // Vincenzo Librandi, Aug 29 2014
(PARI) for(n=0, 25, print1(70*(n+1)*binomial(2*n+1, n+1)/(n+5), ", ")) \\ G. C. Greubel, Apr 06 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Karol A. Penson, Aug 27 2014
STATUS
approved