OFFSET
1,1
EXAMPLE
a(4)=37. 37 has the primitive roots 2, 5, 13, 15, 17, 18, 19, 20, 22, 24, 32, and 35 of which 17, 18, 19, and 20 are consecutive.
MATHEMATICA
PrimRoot[n_] :=Flatten[Position[Table[MultiplicativeOrder[i, n], {i, n - 1}], n - 1]]; t = {}; For[targ = 1, targ <= 22, targ++, flag = 0; For[n = 1, n < 1500, n++, prs = PrimRoot[Prime[n]]; numprs = EulerPhi[Prime[n] - 1]; If[targ > numprs, , For[m = 1, m <= numprs + 1 - targ, m++, temp = Take[prs, {m, m + targ - 1}]; If[temp[[1]] + targ - 1 == temp[[targ]] && flag == 0, t = Append[t, Prime[n]]; flag = 1]; If[flag == 1, Break[]]; ]; If[flag == 1, Break[]]; ]; If[flag == 1, Break[]]; ]]; t
Join[{2}, Module[{prl=Table[{p, Max[Length/@Select[Split[ Differences[ PrimitiveRootList[ p]]], #[[1]]==1&]]}, {p, Prime[Range[1500]]}]}, Table[ SelectFirst[ prl, #[[2]]>=k&], {k, 20}]][[All, 1]]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 23 2019 *)
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Dimitri Papadopoulos, Feb 03 2016
EXTENSIONS
More terms from Harvey P. Dale, Aug 23 2019
STATUS
approved