login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112600
Smallest prime factor of A111392(n).
0
2, 5, 11, 37, 13, 23, 19, 23, 37, 127, 47, 61, 61, 47, 67, 61, 277, 83, 79, 97, 127, 83, 101, 131, 269, 109, 131, 109, 113, 157, 137, 181, 157, 181, 151, 173, 173, 179, 173, 211, 223, 251, 193, 197, 223, 233, 223, 251, 271, 241, 239, 269, 293, 281, 313, 347, 293
OFFSET
1,1
COMMENTS
For all i, if i<n+2 then GCD(p_i,A111392(n))=1, where p_i is i-th prime.
A111392: a(n) = Product_{i=1..n-1} (Product_{k=1..i} p_k + Product_{k=i+1..n} p_k). - Robert G. Wilson v, Dec 22 2005
MATHEMATICA
f[n_] := Product[(Product[Prime[k], {k, i}] + Product[Prime[k], {k, i + 1, n}]), {i, n - 1}]; f[1] = 2; g[n_] := Block[{k = 1}, While[Mod[f[n], Prime[k]] != 0, k++ ]; Prime@k]; Array[g, 20] (* Robert G. Wilson v *)
CROSSREFS
Cf. A111392.
Sequence in context: A295495 A343463 A130622 * A156014 A268397 A261438
KEYWORD
nonn
AUTHOR
Yasutoshi Kohmoto, Dec 15 2005
EXTENSIONS
More terms from Robert G. Wilson v, Dec 22 2005
STATUS
approved