login
Number of North-East lattice paths from (0,0) to (n,n) that have exactly four east steps below the subdiagonal y = x-1.
0

%I #8 Jun 07 2016 13:52:47

%S 14,70,286,1099,4124,15327,56770,210188,779076,2893111,10767680,

%T 40171225,150229560,563151435,2115877410,7967261640,30063189300,

%U 113663662560,430549220244,1633782030774,6210024076424,23641792007350,90140083306676,344168324083080,1315850249846440,5037257160310193

%N Number of North-East lattice paths from (0,0) to (n,n) that have exactly four east steps below the subdiagonal y = x-1.

%C This sequence is related to paired pattern P_1 in Pan and Remmel's link.

%H Ran Pan and Jeffrey B. Remmel, <a href="http://arxiv.org/abs/1601.07988">Paired patterns in lattice paths</a>, arXiv:1601.07988 [math.CO], 2016.

%F G.f.: -((-1 + f(x) + 2*x)^2*(-1 + f(x) + x*(2*f(x) + x + 5*f(x)*x - 10*x^2)))/(8*x^2), where f(x) = sqrt(1 - 4*x).

%F Conjecture: -(n+2)*(641*n-5292)*a(n) +(-641*n^2-1681*n+22692)*a(n-1) +(-4067*n^2+10502*n+80184) *a(n-2) +6*(5629*n-11668)*(2*n-11) *a(n-3)=0. - _R. J. Mathar_, Jun 07 2016

%F Conjecture: +(n+2)*(1023*n^2-11311*n+23730) *a(n) +(1023*n^3+15038*n^2-85751*n+44490)*a(n-1) -10*(2*n-9) *(1023*n^2-2563*n+1450)*a(n-2)=0. - _R. J. Mathar_, Jun 07 2016

%Y Cf. A268370.

%K nonn

%O 5,1

%A _Ran Pan_, Feb 03 2016