login
A268210
Primes p of the form 2^k + 1 such that p - k is a prime q (for k >= 0).
1
2, 3, 5, 17, 65537
OFFSET
1,1
COMMENTS
Intersection of A092506 and A268209.
Sequence is not the same as A004249 because A004249(5) is a composite number.
Corresponding values of numbers k: 0, 1, 2, 4, 16; corresponding values of primes q: 2, 2, 3, 13, 65521.
4 out of 5 known Fermat primes from A019434 (3, 5, 17, 65537) are terms.
EXAMPLE
Prime 17 = 2^4 + 1 is a term because 17 - 4 = 13 (prime).
257 = 2^8 + 1 is not a term because 257 - 8 = 249 (composite number).
MATHEMATICA
2^# + 1 &@ Select[Range[0, 600], PrimeQ[2^# + 1] && PrimeQ[2^# - # + 1] &] (* Michael De Vlieger, Jan 29 2016 *)
PROG
(Magma) [2^k + 1: k in [0..60] | IsPrime(2^k + 1) and IsPrime(2^k - k + 1)]
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Jan 28 2016
STATUS
approved