login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A268213
Number of paths from (0,0) to (n,n) that use E(1,0) and N(0,1) as steps and have even number of East steps below the line y=x-1.
1
1, 2, 5, 16, 51, 180, 622, 2288, 8227, 30940, 113882, 434112, 1622414, 6240360, 23572668, 91245600, 347398435, 1351035180, 5174839714, 20197293600, 77729205658, 304232711640, 1175332659332, 4610721207456, 17868732968846, 70228114687640, 272886854006852
OFFSET
0,2
LINKS
Ran Pan and Jeffrey B. Remmel, Paired patterns in lattice paths, arXiv:1601.07988 [math.CO], 2016.
FORMULA
G.f.: -(-1+f(x)+2*x)*(4+1/f(x)+2*f(x)+Sqrt(1+4*x))/(16*x^2), where f(x)=Sqrt(1-4*x).
MATHEMATICA
CoefficientList[Series[-(-1 + Sqrt[1 - 4 x] + 2 x) (4 + 1/(Sqrt[1 - 4 x]) + 2 Sqrt[1 - 4 x] + Sqrt[1 + 4 x])/(16 x^2), {x, 0, 33}], x] (* Vincenzo Librandi Feb 01 2016 *)
PROG
(PARI) x='x+O('x^50); f=sqrt(1-4*x); Vec((4+1/f+sqrt(1+4*x)+2*f)*(1-f-2*x)/(16*x^2)) \\ Charles R Greathouse IV, Feb 01 2016
CROSSREFS
Sequence in context: A148388 A148389 A108529 * A231357 A303477 A234843
KEYWORD
nonn
AUTHOR
Ran Pan, Jan 28 2016
EXTENSIONS
Typo in Gf fixed by Vincenzo Librandi, Feb 01 2016
STATUS
approved