login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A268208
Number of paths from (0,0) to (n,n) using only steps North, Northeast and East (i.e., steps E(1,0), D(1,1), and N(0,1)) that do not cross y=x "vertically".
0
1, 3, 12, 52, 236, 1108, 5340, 26276, 131484, 667108, 3424108, 17748564, 92776716, 488527284, 2588907708, 13797337668, 73901315644, 397609958596, 2147904635340, 11645489540468, 63349140877356, 345651184335892, 1891209255293852
OFFSET
0,2
COMMENTS
In Pan and Remmel's link, "vertical" crossing is defined via paired pattern P_1 and P_2.
LINKS
Ran Pan and Jeffrey B. Remmel, Paired patterns in lattice paths, arXiv:1601.07988 [math.CO], 2016.
Luis Verde-Star, A Matrix Approach to Generalized Delannoy and Schröder Arrays, J. Int. Seq., Vol. 24 (2021), Article 21.4.1.
FORMULA
G.f.: (x-1)*(-1+3*x+sqrt(1-6*x+x^2))/(x^2*(3-x+sqrt(1-6*x+x^2))).
D-finite with recurrence (n+2)*a(n) +(-7*n-2)*a(n-1) +(7*n-16)*a(n-2) +(-n+4)*a(n-3)=0. - R. J. Mathar, Jun 07 2016
a(n) = Sum_{m=0..n} C(2*m+2,m)*C(m+n,n-m)/(m+1). - Vladimir Kruchinin Jan 20 2021
a(n) ~ 2^(5/4) * (1 + sqrt(2))^(2*n+1) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Jan 20 2021
a(n) = hypergeom([3/2, -n, n + 1], [1/2, 3], -1). - Peter Luschny, Jan 20 2021
EXAMPLE
For example, ENDNE crosses y=x vertically. DDNE does not cross y=x. NEDEN crosses y=x horizontally.
For n=2, there are 13 paths from (0,0) to (2,2) and only one of them crosses y=x vertically, namely ENNE. Therefore, a(2) = 12.
MAPLE
a := n -> hypergeom([3/2, -n, n + 1], [1/2, 3], -1):
seq(simplify(a(n)), n=0..22); # Peter Luschny, Jan 20 2021
PROG
(PARI) my(x = 'x + O('x^30)); Vec((x-1)*(-1+3*x+sqrt(1-6*x+x^2))/(x^2*(3-x+sqrt(1-6*x+x^2)))) \\ Michel Marcus, Feb 02 2016
(Maxima)
a(n):=sum(((binomial(2*m+2, m))*(binomial(m+n, n-m)))/(m+1), m, 0, n); /* Vladimir Kruchinin, Jan 20 2021 */
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Ran Pan, Jan 28 2016
STATUS
approved