login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of paths from (0,0) to (n,n) using only steps North, Northeast and East (i.e., steps E(1,0), D(1,1), and N(0,1)) that do not cross y=x "vertically".
0

%I #37 Jul 31 2024 09:47:02

%S 1,3,12,52,236,1108,5340,26276,131484,667108,3424108,17748564,

%T 92776716,488527284,2588907708,13797337668,73901315644,397609958596,

%U 2147904635340,11645489540468,63349140877356,345651184335892,1891209255293852

%N Number of paths from (0,0) to (n,n) using only steps North, Northeast and East (i.e., steps E(1,0), D(1,1), and N(0,1)) that do not cross y=x "vertically".

%C In Pan and Remmel's link, "vertical" crossing is defined via paired pattern P_1 and P_2.

%H Ran Pan and Jeffrey B. Remmel, <a href="http://arxiv.org/abs/1601.07988">Paired patterns in lattice paths</a>, arXiv:1601.07988 [math.CO], 2016.

%H Luis Verde-Star, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL24/Verde/verde4.html">A Matrix Approach to Generalized Delannoy and Schröder Arrays</a>, J. Int. Seq., Vol. 24 (2021), Article 21.4.1.

%F G.f.: (x-1)*(-1+3*x+sqrt(1-6*x+x^2))/(x^2*(3-x+sqrt(1-6*x+x^2))).

%F D-finite with recurrence (n+2)*a(n) +(-7*n-2)*a(n-1) +(7*n-16)*a(n-2) +(-n+4)*a(n-3)=0. - _R. J. Mathar_, Jun 07 2016

%F a(n) = Sum_{m=0..n} C(2*m+2,m)*C(m+n,n-m)/(m+1). - _Vladimir Kruchinin_ Jan 20 2021

%F a(n) ~ 2^(5/4) * (1 + sqrt(2))^(2*n+1) / (sqrt(Pi) * n^(3/2)). - _Vaclav Kotesovec_, Jan 20 2021

%F a(n) = hypergeom([3/2, -n, n + 1], [1/2, 3], -1). - _Peter Luschny_, Jan 20 2021

%e For example, ENDNE crosses y=x vertically. DDNE does not cross y=x. NEDEN crosses y=x horizontally.

%e For n=2, there are 13 paths from (0,0) to (2,2) and only one of them crosses y=x vertically, namely ENNE. Therefore, a(2) = 12.

%p a := n -> hypergeom([3/2, -n, n + 1], [1/2, 3], -1):

%p seq(simplify(a(n)), n=0..22); # _Peter Luschny_, Jan 20 2021

%o (PARI) my(x = 'x + O('x^30)); Vec((x-1)*(-1+3*x+sqrt(1-6*x+x^2))/(x^2*(3-x+sqrt(1-6*x+x^2)))) \\ _Michel Marcus_, Feb 02 2016

%o (Maxima)

%o a(n):=sum(((binomial(2*m+2,m))*(binomial(m+n,n-m)))/(m+1),m,0,n); /* _Vladimir Kruchinin_, Jan 20 2021 */

%Y Cf. A001850, A001003, A006318.

%K nonn,easy

%O 0,2

%A _Ran Pan_, Jan 28 2016