login
A267386
Number of acyclic orientations of the Turán graph T(n,6).
2
1, 1, 2, 6, 24, 120, 720, 4320, 30960, 256320, 2399760, 25022880, 287250480, 3284869680, 41344521840, 566715682800, 8391341277360, 133348995238320, 2262083352430320, 38232720235613520, 689864650481977200, 13221780471876281040, 268029961230742291440
OFFSET
0,3
COMMENTS
An acyclic orientation is an assignment of a direction to each edge such that no cycle in the graph is consistently oriented. Stanley showed that the number of acyclic orientations of a graph G is equal to the absolute value of the chromatic polynomial X_G(q) evaluated at q=-1.
LINKS
Richard P. Stanley, Acyclic Orientations of Graphs, Discrete Mathematics, 5 (1973), pages 171-178, doi:10.1016/0012-365X(73)90108-8
Wikipedia, Turán graph
FORMULA
a(n) ~ n! / (5 * (1 - log(6/5))^(5/2) * 6^n * (log(6/5))^(n+1)). - Vaclav Kotesovec, Feb 18 2017
CROSSREFS
Column k=6 of A267383.
Sequence in context: A179358 A179365 A070947 * A215718 A060727 A152350
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jan 13 2016
STATUS
approved