login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A070947
Number of permutations on n letters that have only cycles of length 6 or less.
5
1, 1, 2, 6, 24, 120, 720, 4320, 29520, 225360, 1890720, 17169120, 166112640, 1680462720, 18189031680, 209008512000, 2532028896000, 32143053484800, 425585741760000, 5865854258188800, 84489178710067200, 1266667808011315200, 19700712491727974400
OFFSET
0,3
LINKS
P. L. Krapivsky, J. M. Luck, Coverage fluctuations in theater models, arXiv:1902.04365 [cond-mat.stat-mech], 2019.
R. Petuchovas, Asymptotic analysis of the cyclic structure of permutations, arXiv:1611.02934 [math.CO], p. 6, 2016.
FORMULA
E.g.f.: exp(x+1/2*x^2+1/3*x^3+1/4*x^4+1/5*x^5+1/6*x^6).
MAPLE
with(combstruct):a:=proc(m) [ZL, {ZL=Set(Cycle(Z, m>=card))}, labeled]; end: A:=a(6):seq(count(A, size=n), n=0..21); # Zerinvary Lajos, Jun 11 2008
# second Maple program:
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)
*binomial(n-1, j-1)*(j-1)!, j=1..min(n, 6)))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Dec 28 2017
MATHEMATICA
terms = 22; CoefficientList[Exp[-Log[1-x] + O[x]^7 // Normal] + O[x]^terms, x]*Range[0, terms-1]! (* Jean-François Alcover, Dec 28 2017 *)
PROG
(Python)
from sympy.core.cache import cacheit
from sympy import binomial, factorial as f
@cacheit
def a(n): return 1 if n==0 else sum(a(n-j)*binomial(n - 1, j - 1)*f(j - 1) for j in range(1, min(n, 6)+1))
print([a(n) for n in range(31)]) # Indranil Ghosh, Dec 29 2017, after Alois P. Heinz
CROSSREFS
Cf. A057693.
Sequence in context: A179352 A179358 A179365 * A267386 A215718 A060727
KEYWORD
nonn
AUTHOR
N. J. A. Sloane and Sharon Sela, May 18 2002
STATUS
approved