login
A267385
Number of acyclic orientations of the Turán graph T(n,5).
2
1, 1, 2, 6, 24, 120, 600, 3720, 27240, 229080, 2170680, 20452440, 217008600, 2550317880, 32808887160, 457907248920, 6355848354360, 95721761831160, 1551458493435480, 26890032710452440, 495810323060597880, 9097662007250393880, 177624183228083188440
OFFSET
0,3
COMMENTS
An acyclic orientation is an assignment of a direction to each edge such that no cycle in the graph is consistently oriented. Stanley showed that the number of acyclic orientations of a graph G is equal to the absolute value of the chromatic polynomial X_G(q) evaluated at q=-1.
LINKS
Richard P. Stanley, Acyclic Orientations of Graphs, Discrete Mathematics, 5 (1973), pages 171-178, doi:10.1016/0012-365X(73)90108-8
Wikipedia, Turán graph
FORMULA
a(n) ~ n! / (4 * (1 - log(5/4))^2 * 5^n * (log(5/4))^(n+1)). - Vaclav Kotesovec, Feb 18 2017
CROSSREFS
Column k=5 of A267383.
Sequence in context: A179357 A179364 A070946 * A060726 A152332 A152349
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jan 13 2016
STATUS
approved