login
A267388
Number of acyclic orientations of the Turán graph T(n,8).
2
1, 1, 2, 6, 24, 120, 720, 5040, 40320, 322560, 2943360, 30078720, 339696000, 4196666880, 56255149440, 812752093440, 12585067447680, 194465276369280, 3220308737573760, 56845456896816000, 1064856592650695040, 21087473349235547520, 440007278378842984320
OFFSET
0,3
COMMENTS
An acyclic orientation is an assignment of a direction to each edge such that no cycle in the graph is consistently oriented. Stanley showed that the number of acyclic orientations of a graph G is equal to the absolute value of the chromatic polynomial X_G(q) evaluated at q=-1.
LINKS
Richard P. Stanley, Acyclic Orientations of Graphs, Discrete Mathematics, 5 (1973), pages 171-178, doi:10.1016/0012-365X(73)90108-8
Wikipedia, Turán graph
FORMULA
a(n) ~ n! / (7 * (1 - log(8/7))^(7/2) * 8^n * (log(8/7))^(n+1)). - Vaclav Kotesovec, Feb 18 2017
CROSSREFS
Column k=8 of A267383.
Sequence in context: A179354 A179360 A179367 * A152628 A152647 A152642
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jan 13 2016
STATUS
approved