login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A267178
Array read by antidiagonals: T(n,k) = parity of number of steps in simple Euclidean algorithm for gcd(n,k) where n >= 1, k >= 1.
4
1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0
OFFSET
1
LINKS
EXAMPLE
The array A072030 (before it is reduced mod 2) begins:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...
2, 1, 3, 2, 4, 3, 5, 4, 6, 5, ...
3, 3, 1, 4, 4, 2, 5, 5, 3, 6, ...
4, 2, 4, 1, 5, 3, 5, 2, 6, 4, ...
5, 4, 4, 5, 1, 6, 5, 5, 6, 2, ...
6, 3, 2, 3, 6, 1, 7, 4, 3, 4, ...
7, 5, 5, 5, 5, 7, 1, 8, 6, 6, ...
8, 4, 5, 2, 5, 4, 8, 1, 9, 5, ...
9, 6, 3, 6, 6, 3, 6, 9, 1, 10, ...
10, 5, 6, 4, 2, 4, 6, 5, 10, 1, ...
...
The first few antidiagonals read mod 2 are:
1,
0, 0,
1, 1, 1,
0, 1, 1, 0,
1, 0, 1, 0, 1,
0, 0, 0, 0, 0, 0,
1, 1, 0, 1, 0, 1, 1,
0, 1, 0, 1, 1, 0, 1, 0,
1, 0, 1, 1, 1, 1, 1, 0, 1,
0, 0, 1, 1, 0, 0, 1, 1, 0, 0,
1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1,
0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0,
1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1,
...
MAPLE
A267178 := proc(n, k)
A072030(n, k) mod 2 ;
end proc:
seq(seq(A267178(d-k, k), k=1..d-1), d=2..12) ; # R. J. Mathar, May 08 2016
MATHEMATICA
T[n_, k_] := T[n, k] = Which[n < 1 || k < 1, 0, n == k, 1, n < k, T[k, n], True, 1+T[k, n-k]] // Mod[#, 2]&;
Table[T[d-k, k], {d, 2, 15}, {k, 1, d-1}] // Flatten (* Jean-François Alcover, Apr 25 2023 *)
PROG
(PARI)
tabl(nn) = {for (n=1, nn,
for (k=1, n, a = n-k+1; b = k; r = 1; s = 0; while (r, q = a\b; r = a - b*q; s += q; a = b; b = r); s2=s%2; print1(s2, ", "); );
print(); ); }
tabl(10)
CROSSREFS
This is A072030 read mod 2.
Sequence in context: A267037 A200246 A267292 * A285277 A116937 A267810
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Jan 14 2016
STATUS
approved