OFFSET
0,8
COMMENTS
We start at (i,j) and apply either (i,j) -> (j,i) if i>j or (i,j) -> (i,j-i) if j>i. T(i,j) is the minimal number of steps to reach either (0,k) or (k,k) for some k.
Somewhat analogous to the array in A072030 except that here the offset is different and we pay for transposition steps as well as subtraction steps.
FORMULA
Recurrence: T(0,k)=TR(k,k)=0; if i>j then T(i,j)=T(j,i)+1; if j>i then T(i,j)=T(i,j-i)+1.
For a > 1 and b,k > 0, T(ak,k) = a, T(ak+b,k) = T(b,k) + a + 2, T(k,ak) = a - 1, T(k,ak+b) = T(k,b) + a. - Charlie Neder, Feb 08 2019
EXAMPLE
Array begins:
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ...
1, 2, 0, 3, 1, 4, 2, 5, 3, 6, 4, 7, 5, ...
1, 3, 4, 0, 4, 5, 1, 5, 6, 2, 6, 7, 3, ...
1, 4, 2, 5, 0, 5, 3, 6, 1, 6, 4, 7, 2, ...
1, 5, 5, 6, 6, 0, 6, 6, 7, 7, 1, 7, 7, ...
1, 6, 3, 2, 4, 7, 0, 7, 4, 3, 5, 8, 1, ...
1, 7, 6, 6, 7, 7, 8, 0, 8, 7, 7, 8, 8, ...
1, 8, 4, 7, 2, 8, 5, 9, 0, 9, 5, 8, 3, ...
1, 9, 7, 3, 7, 8, 4, 8, 10, 0, 10, 8, 4, ...
1, 10, 5, 7, 5, 2, 6, 8, 6, 11, 0, 11, 6, ...
1, 11, 8, 8, 8, 8, 9, 9, 9, 9, 12, 0, 12, ...
1, 12, 6, 4, 3, 8, 2, 9, 4, 5, 7, 13, 0, ...
...
The first few antidiagonals are:
0,
1, 0,
1, 0, 0,
1, 2, 1, 0,
1, 3, 0, 2, 0,
1, 4, 4, 3, 3, 0,
1, 5, 2, 0, 1, 4, 0,
1, 6, 5, 5, 4, 4, 5, 0,
1, 7, 3, 6, 0, 5, 2, 6, 0,
1, 8, 6, 2, 6, 5, 1, 5, 7, 0,
1, 9, 4, 6, 4, 0, 3, 5, 3, 8, 0,
...
MAPLE
M:=12;
A:=Array(0..M, 0..M, 0);
for k from 0 to M do A[0, k]:=0; A[k, k]:=0; od:
# border number k
# col k, row n
for k from 1 to M do
for n from 1 to k-1 do A[n, k]:=A[n, k-n]+1; od:
# row k, col i
for i from k-1 by -1 to 0 do A[k, i]:=A[i, k]+1; od:
od:
for n from 0 to M do lprint([seq(A[n, k], k=0..M)]); od: # square array
for n from 0 to M do lprint([seq(A[n-j, j], j=0..n)]); od: # antidiagonals
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Jan 16 2016
STATUS
approved