login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Array read by antidiagonals: T(n,k) = parity of number of steps in simple Euclidean algorithm for gcd(n,k) where n >= 1, k >= 1.
4

%I #26 Apr 25 2023 14:21:26

%S 1,0,0,1,1,1,0,1,1,0,1,0,1,0,1,0,0,0,0,0,0,1,1,0,1,0,1,1,0,1,0,1,1,0,

%T 1,0,1,0,1,1,1,1,1,0,1,0,0,1,1,0,0,1,1,0,0,1,1,1,0,1,1,1,0,1,1,1,0,1,

%U 0,0,1,1,1,1,0,0,1,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0,0,0,0,0

%N Array read by antidiagonals: T(n,k) = parity of number of steps in simple Euclidean algorithm for gcd(n,k) where n >= 1, k >= 1.

%H R. J. Mathar, <a href="/A267178/b267178.txt">Table of n, a(n) for n = 1..4950</a>

%e The array A072030 (before it is reduced mod 2) begins:

%e 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...

%e 2, 1, 3, 2, 4, 3, 5, 4, 6, 5, ...

%e 3, 3, 1, 4, 4, 2, 5, 5, 3, 6, ...

%e 4, 2, 4, 1, 5, 3, 5, 2, 6, 4, ...

%e 5, 4, 4, 5, 1, 6, 5, 5, 6, 2, ...

%e 6, 3, 2, 3, 6, 1, 7, 4, 3, 4, ...

%e 7, 5, 5, 5, 5, 7, 1, 8, 6, 6, ...

%e 8, 4, 5, 2, 5, 4, 8, 1, 9, 5, ...

%e 9, 6, 3, 6, 6, 3, 6, 9, 1, 10, ...

%e 10, 5, 6, 4, 2, 4, 6, 5, 10, 1, ...

%e ...

%e The first few antidiagonals read mod 2 are:

%e 1,

%e 0, 0,

%e 1, 1, 1,

%e 0, 1, 1, 0,

%e 1, 0, 1, 0, 1,

%e 0, 0, 0, 0, 0, 0,

%e 1, 1, 0, 1, 0, 1, 1,

%e 0, 1, 0, 1, 1, 0, 1, 0,

%e 1, 0, 1, 1, 1, 1, 1, 0, 1,

%e 0, 0, 1, 1, 0, 0, 1, 1, 0, 0,

%e 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1,

%e 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0,

%e 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1,

%e ...

%p A267178 := proc(n,k)

%p A072030(n,k) mod 2 ;

%p end proc:

%p seq(seq(A267178(d-k,k),k=1..d-1),d=2..12) ; # _R. J. Mathar_, May 08 2016

%t T[n_, k_] := T[n, k] = Which[n < 1 || k < 1, 0, n == k, 1, n < k, T[k, n], True, 1+T[k, n-k]] // Mod[#, 2]&;

%t Table[T[d-k, k], {d, 2, 15}, {k, 1, d-1}] // Flatten (* _Jean-François Alcover_, Apr 25 2023 *)

%o (PARI)

%o tabl(nn) = {for (n=1, nn,

%o for (k=1, n, a = n-k+1; b = k; r = 1; s = 0; while (r, q = a\b; r = a - b*q; s += q; a = b; b = r); s2=s%2; print1(s2, ", "); );

%o print(); ); }

%o tabl(10)

%Y This is A072030 read mod 2.

%K nonn,tabl

%O 1

%A _N. J. A. Sloane_, Jan 14 2016