OFFSET
0,2
REFERENCES
N. Bourbaki, Groupes et Algèbres de Lie, Chap. 4, 5 and 6, Hermann, Paris, 1968. See Chap. VI, Section 4, Problem 10b, page 231, W_a(t).
H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, Table 10.
J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial; also Table 3.1 page 59.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 1, -2, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1).
FORMULA
G.f. = t1/t2 where t1 is (1 + t)*(1 + t + t^2 + t^3 + t^4 + t^5 + t^6 + t^7 + t^8 + t^9 + t^10 + t^11)*(1 + t + t^2 + t^3 + t^4 + t^5 + t^6 + t^7 + t^8 + t^9 + t^10 + t^11 + t^12 + t^13 + t^14 + t^15 + t^16 + t^17 + t^18 + t^19)*(1 + t + t^2 + t^3 + t^4 + t^5 + t^6 + t^7 + t^8 + t^9 + t^10 + t^11 + t^12 + t^13 + t^14 + t^15 + t^16 + t^17 + t^18 + t^19 + t^20 + t^21 + t^22 + t^23 + t^24 + t^25 + t^26 + t^27 + t^28 + t^29) and t2 = (1 - t)*(1 - t^11)*(1 - t^19)*(1 - t^29).
G.f.: (1 - x^2)*(1 - x^12)*(1 - x^20)*(1 - x^30)/((1 - x)^5*(1 - x^11)*(1 - x^19)*(1 - x^29)). - G. C. Greubel, Feb 04 2020
MAPLE
m:=60; S:=series((1-x^2)*(1-x^12)*(1-x^20)*(1-x^30)/((1-x)^5*(1-x^11)*(1-x^19)*(1-x^29)), x, m+1): seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Feb 04 2020
MATHEMATICA
CoefficientList[Series[(1 + t)^4 * (1 + t^2) * (1 + t^2 + t^4) * (1 + t^4 + t^8) * (1 + t^2 + t^4 + t^6 + t^8) * (1 + t^6 + t^10 + t^12 + t^16 + t^18 + t^22 + t^24 + t^28 + t^34)/((1 - t) * (1 - t^11) * (1 - t^19) * (1 - t^29)), {t, 0, 60}], t] (* Wesley Ivan Hurt, Apr 12 2017; modified by G. C. Greubel, Feb 04 2020 *)
PROG
(PARI) Vec( (1-x^2)*(1-x^12)*(1-x^20)*(1-x^30)/((1-x)^5*(1-x^11)*(1-x^19)*(1-x^29)) +O('x^60) ) \\ G. C. Greubel, Feb 04 2020
(Magma) R<x>:=PowerSeriesRing(Integers(), 60); Coefficients(R!( (1-x^2)*(1-x^12)*(1-x^20)*(1-x^30)/((1-x)^5*(1-x^11)*(1-x^19)*(1-x^29)) )); // G. C. Greubel, Feb 04 2020
(Sage)
def A266783_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1-x^2)*(1-x^12)*(1-x^20)*(1-x^30)/((1-x)^5*(1-x^11)*(1-x^19)*(1-x^29)) ).list()
A266783_list(60) # G. C. Greubel, Feb 04 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 11 2016
STATUS
approved