login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266782
The growth series for the affine Coxeter (or Weyl) group [3,5] (or H_3).
1
1, 4, 9, 16, 25, 37, 52, 69, 88, 110, 136, 165, 196, 229, 265, 304, 345, 388, 434, 484, 537, 592, 649, 709, 772, 837, 904, 974, 1048, 1125, 1204, 1285, 1369, 1456, 1545, 1636, 1730, 1828, 1929, 2032, 2137, 2245, 2356, 2469, 2584, 2702, 2824, 2949, 3076, 3205, 3337, 3472, 3609, 3748, 3890, 4036, 4185, 4336, 4489, 4645
OFFSET
0,2
REFERENCES
N. Bourbaki, Groupes et Algèbres de Lie, Chap. 4, 5 and 6, Hermann, Paris, 1968. See Chap. VI, Section 4, Problem 10b, page 231, W_a(t).
H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, Table 10.
J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial; also Table 3.1 page 59.
LINKS
Index entries for linear recurrences with constant coefficients, signature (3, -3, 0, 3, -3, 0, 3, -3, 1).
FORMULA
G.f.: (1+x)*(1+x^3)*(1+x^5)/((1-x+x^3-x^4+x^6-x^7)*(1-x)^2).
MAPLE
m:= 60; S:=series((1+x)*(1+x^3)*(1+x^5)/((1-x+x^3-x^4+x^6-x^7)*(1-x)^2), x, m+1): seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Feb 04 2020
MATHEMATICA
CoefficientList[Series[(1+x)*(1+x^3)*(1+x^5)/((1-x+x^3-x^4+x^6-x^7)*(1-x)^2), {x, 0, 60}], x] (* Vincenzo Librandi, Sep 07 2016 *)
PROG
(PARI) Vec( (1+x)*(1+x^3)*(1+x^5)/((1-x+x^3-x^4+x^6-x^7)*(1-x)^2) +O('x^60) ) \\ G. C. Greubel, Feb 04 2020
(Magma) R<x>:=PowerSeriesRing(Integers(), 60); Coefficients(R!( (1+x)*(1+x^3)*(1+x^5)/((1-x+x^3-x^4+x^6-x^7)*(1-x)^2) )); // G. C. Greubel, Feb 04 2020
(Sage)
def A266782_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1+x)*(1+x^3)*(1+x^5)/((1-x+x^3-x^4+x^6-x^7)*(1-x)^2) ).list()
A266782_list(60) # G. C. Greubel, Feb 04 2020
CROSSREFS
For the growth series for the finite group see A162495.
Sequence in context: A075056 A022779 A265078 * A008105 A008089 A008086
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jan 11 2016
STATUS
approved