The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A266782 The growth series for the affine Coxeter (or Weyl) group [3,5] (or H_3). 1
 1, 4, 9, 16, 25, 37, 52, 69, 88, 110, 136, 165, 196, 229, 265, 304, 345, 388, 434, 484, 537, 592, 649, 709, 772, 837, 904, 974, 1048, 1125, 1204, 1285, 1369, 1456, 1545, 1636, 1730, 1828, 1929, 2032, 2137, 2245, 2356, 2469, 2584, 2702, 2824, 2949, 3076, 3205, 3337, 3472, 3609, 3748, 3890, 4036, 4185, 4336, 4489, 4645 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 REFERENCES N. Bourbaki, Groupes et AlgĂ¨bres de Lie, Chap. 4, 5 and 6, Hermann, Paris, 1968. See Chap. VI, Section 4, Problem 10b, page 231, W_a(t). H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, Table 10. J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under PoincarĂ© polynomial; also Table 3.1 page 59. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 FORMULA G.f.: (1+x)*(1+x^3)*(1+x^5)/((1-x+x^3-x^4+x^6-x^7)*(1-x)^2). MAPLE m:= 60; S:=series((1+x)*(1+x^3)*(1+x^5)/((1-x+x^3-x^4+x^6-x^7)*(1-x)^2), x, m+1): seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Feb 04 2020 MATHEMATICA CoefficientList[Series[(1+x)*(1+x^3)*(1+x^5)/((1-x+x^3-x^4+x^6-x^7)*(1-x)^2), {x, 0, 60}], x] (* Vincenzo Librandi, Sep 07 2016 *) PROG (PARI) Vec( (1+x)*(1+x^3)*(1+x^5)/((1-x+x^3-x^4+x^6-x^7)*(1-x)^2) +O('x^60) ) \\ G. C. Greubel, Feb 04 2020 (MAGMA) R:=PowerSeriesRing(Integers(), 60); Coefficients(R!( (1+x)*(1+x^3)*(1+x^5)/((1-x+x^3-x^4+x^6-x^7)*(1-x)^2) )); // G. C. Greubel, Feb 04 2020 (Sage) def A266782_list(prec):     P. = PowerSeriesRing(ZZ, prec)     return P( (1+x)*(1+x^3)*(1+x^5)/((1-x+x^3-x^4+x^6-x^7)*(1-x)^2) ).list() A266782_list(60) # G. C. Greubel, Feb 04 2020 CROSSREFS For the growth series for the finite group see A162495. Sequence in context: A075056 A022779 A265078 * A008105 A008089 A008086 Adjacent sequences:  A266779 A266780 A266781 * A266783 A266784 A266785 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Jan 11 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 19 10:03 EST 2020. Contains 332041 sequences. (Running on oeis4.)