login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266761
Growth series for affine Coxeter group (or affine Weyl group) D_6.
1
1, 7, 27, 78, 188, 400, 777, 1406, 2403, 3917, 6136, 9293, 13670, 19603, 27485, 37773, 50993, 67744, 88703, 114628, 146366, 184857, 231139, 286352, 351742, 428669, 518610, 623164, 744055, 883138, 1042406, 1223994, 1430184, 1663408, 1926254, 2221471, 2551974, 2920848, 3331353, 3786930, 4291206, 4847999, 5461321, 6135384, 6874604
OFFSET
0,2
REFERENCES
N. Bourbaki, Groupes et Algèbres de Lie, Chap. 4, 5 and 6, Hermann, Paris, 1968. See Chap. VI, Section 4, Problem 10b, page 231, W_a(t).
J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See Table 3.1, page 59.
LINKS
Index entries for linear recurrences with constant coefficients, signature (4, -6, 3, 3, -5, -1, 10, -13, 7, 2, -6, 2, 7, -13, 10, -1, -5, 3, 3, -6, 4, -1).
FORMULA
The growth series for the affine Coxeter group of type D_k (k >= 3) has g.f. = Product_i (1-x^{m_i+1})/((1-x)*(1-x^{m_i})) where the m_i are [1,3,5,...,2k-3,k-1].
Here (k=6) the G.f. is (t^5+1)*(1+t+t^2+t^3+t^4+t^5+t^6+t^7)*(1+t+t^2+t^3)*(1+t)*(t^3+1)^2/(t^7-t^6+t^4-t^3+t-1)/(-1+t^7)/(-1+t)^3/(-1+t^5).
CROSSREFS
The growth series for the affine Coxeter groups D_3 through D_12 are A005893 and A266759-A266767.
Sequence in context: A005585 A161410 A267169 * A027180 A036597 A338230
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 10 2016
STATUS
approved