login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A161410
Number of reduced words of length n in the infinite affine Weyl group (E_6)^{~} on 7 generators.
2
1, 7, 27, 77, 183, 385, 740, 1325, 2242, 3623, 5633, 8474, 12391, 17676, 24670, 33768, 45426, 60164, 78568, 101296, 129083, 162742, 203168, 251346, 308355, 375369, 453663, 544620, 649732, 770602, 908952, 1066628, 1245600, 1447967, 1675965, 1931969, 2218494
OFFSET
0,2
REFERENCES
N. Bourbaki, Groupes et alg. de Lie, Chap. 4, 5, 6. (The group is defined in Planche V.)
LINKS
FORMULA
G.f.: (x^22 + 3*x^21 + 5*x^20 + 7*x^19 + 10*x^18 + 14*x^17 + 17*x^16 + 19*x^15 + 22*x^14 + 25*x^13 + 26*x^12 + 26*x^11 + 26*x^10 + 25*x^9 + 22*x^8 + 19*x^7 + 17*x^6 + 14*x^5 + 10*x^4 + 7*x^3 + 5*x^2 + 3*x + 1)/(x^22 - 4*x^21 + 6*x^20 - 4*x^19 + x^18 - x^15 + 4*x^14 - 6*x^13 + 4*x^12 - 2*x^11 + 4*x^10 - 6*x^9 + 4*x^8 - x^7 + x^4 - 4*x^3 + 6*x^2 - 4*x + 1)
EXAMPLE
Coxeter matrix:
. [1 2 3 2 2 2 2]
. [2 1 2 3 2 2 3]
. [3 2 1 3 2 2 2]
. [2 3 3 1 3 2 2]
. [2 2 2 3 1 3 2]
. [2 2 2 2 3 1 2]
. [2 3 2 2 2 2 1]
MATHEMATICA
CoefficientList[Series[(x^22 + 3 x^21 + 5 x^20 + 7 x^19 + 10 x^18 + 14 x^17 + 17 x^16 + 19 x^15 + 22 x^14 + 25 x^13 + 26 x^12 + 26 x^11 + 26 x^10 + 25 x^9 + 22 x^8 + 19 x^7 + 17 x^6 + 14 x^5 + 10 x^4 + 7 x^3 + 5 x^2 + 3 x + 1) / (x^22 - 4 x^21 + 6 x^20 - 4 x^19 + x^18 - x^15 + 4 x^14 - 6 x^13 + 4 x^12 - 2 x^11 + 4 x^10 - 6 x^9 + 4 x^8 - x^7 + x^4 - 4 x^3 + 6 x^2 - 4 x + 1), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 09 2013 *)
PROG
(Magma)
Z := Integers();
C := SymmetricMatrix(
[1,
2, 1,
3, 2, 1,
2, 3, 3, 1,
2, 2, 2, 3, 1,
2, 2, 2, 2, 3, 1,
2, 3, 2, 2, 2, 2, 1]);
G := CoxeterGroup(GrpFPCox, C);
f := GrowthFunction(G);
T<z> := PowerSeriesRing(Z, 50);
Eltseq(T!f);
// Corrected by Klaus Brockhaus, Feb 12 2010
CROSSREFS
Sequence in context: A374930 A162493 A005585 * A267169 A266761 A027180
KEYWORD
nonn,easy
AUTHOR
John Cannon and N. J. A. Sloane, Nov 29 2009
STATUS
approved